The Mortality Effects of Retirement: Evidence from Social Security Eligibility at Age 62

Maria D. Fitzpatrick
Cornell University \& NBER

Timothy J. Moore
George Washington University \& NBER
Funded by grants from the Alfred P. Sloan Foundation's Working Longer Program and the Steven H. Sandell Grant in Retirement Research sponsored by the SSA and the Center for Retirement Research at Boston College.

Introduction

- Huge interest in health effects of retirement
- Understand implications of population aging
- Evaluate proposed reforms to retirement policies
- Empirical challenge: health and retirement are jointly determined
- Individuals in poor health are likely to retire earlier
- Our research question: Is mortality affected by the availability of Social Security at 62?

Social Security Eligibility at Age 62

- 62 is the earliest age for Retirement Insurance
- Workers claiming at 62 receive $75-80 \%$ of their Primary Insurance Amount (PIA)
- Compared to 100% at Full Retirement Age (FRA)
- Ave. monthly payments: ~\$1200 (men), ~\$900 (women)
- Large fraction of population claim at 62
- Nearly 40% of people claim within 4 months of age 62

Cumulative Rate of New Social Security Claims, Ages 59 to 67

Note: We use birth cohorts from 1921 to 1948 and include new claims by both workers and dependents for the Disability, Retirement and Survivors components of Social Security. Sources are 1\% extract of Master Beneficiary Record and population data from Current Population Survey.

Mortality at Age 62

- Use Multiple Cause of Death (MCOD) data
- Data covers whole population
- Have exact dates of birth and death (restricted version)
- Examine mortality in relation to age 62
- Regression discontinuity (RD) design using an age-based eligibility threshold
- Follows, e.g., Card, Dobkin \& Maestas (2009), Anderson, Dobkin \& Gross (2014)
- Estimating local average treatment effect of Social Security eligibility on mortality if no other changes at 62
- Many concurrent changes: in retirement, work, level of activity, health insurance coverage

Preview of Results

- Mortality increases at age 62 by ~ 1.5 percent
- Increase for males is ~ 2 percent
- Estimates are statistically significant across local nonparametric and global parametric RD specifications
- Robust to modeling choices, including bandwidth
- Increase for females is ~ 1 percent
- Estimates are not robust across modeling choices

Mortality in Relation to Age 62

Mortality in Relation to Age 62, by Sex

B: Females

Preview of Results

- Largest increases in male mortality occur for:
- Males not married or with <high school educ.
- Deaths outside of hospitals/institutions
- Cause of death: external causes, lung cancer \& COPD
- Male mortality increase present in different periods
- Unaffected by Full Retirement Age rise from 65 to 66
- Suggestive evidence it may be other lifestyle changes rather than Social Security claiming per se

Existing Literature

- Variety of empirical strategies and many outcomes:
- Cognitive functioning: e.g., Bonsang, Adam \& Perelman (2012), Coe et al. (2012), Rohwedder \& Willis (2010)
- Self-reported health/subjective wellbeing: e.g., Charles (2004), Neuman (2008)
- Mortality: Blake \& Garrouste (2013), Coe \& Lindeboom (2008), Hernaes et al. (2013), Kuhn, Wuellrich \& Zweimuller (2010)
- Other/multiple outcomes: e.g., Behncke (2012), Bound \& Waidmann (2007), Coe \& Zamarro (2011), Dave, Reshad \& Spasojevic (2008), Insler (2014), Eibich (2015)
- Lack of consensus on direction of effects, especially for objective health outcomes
- Little information on heterogeneity, mechanisms

I. Data and

Empirical Approach

Data

- MCOD data (National Center for Health Statistics)
- Combine dates of birth and death to get exact age
- Demographics: sex, age, race, marital status, education
- Underlying cause and place of death
- Create mortality counts for birth cohorts 1921-1948
- Complement with:
- 1\% extract of Master Beneficiary Record
- Health and Retirement Study
- NHANES

Empirical Framework

- RD Specification

$$
\log \left(\text { Mortality }_{a}\right)=f(a)+\text { Post62 }{ }_{a}+{ }_{a}
$$

- Dependent variable is log mortality at age of death (measured in months) in relation to age 62, a
- Control for age-mortality relationship on either side of the discontinuity
- Post 62_{a} is a dummy variable if $a \geq 62$
- Use robust standard errors, ε_{a}
- Coefficient of interest, β, represents change in mortality at age 62
- Estimates are robust to both global parametric and local non-parametric methods

II. Main Results

Regression Estimates

Regression type	$\begin{gathered} \hline \hline \text { All } \\ (1) \\ \hline \end{gathered}$	Males (2)	Females (3)
Global parametric regressions (bandwidth $=12$ months)			
Quadratic regression	$\begin{gathered} 0.0135 * * * \\ (0.0043) \end{gathered}$	$\begin{gathered} 0.0185 * * * \\ (0.0049) \end{gathered}$	$\begin{gathered} 0.0058 \\ (0.0049) \end{gathered}$
Cubic regression	$\begin{gathered} 0.0197 * * * \\ (0.0049) \end{gathered}$	$\begin{gathered} 0.0236 * * * \\ (0.0060) \end{gathered}$	$\begin{gathered} 0.0138 * * * \\ (0.0047) \end{gathered}$
Quartic regression	$\begin{gathered} 0.0193 * * * \\ (0.0051) \end{gathered}$	$\begin{gathered} 0.0243 * * * \\ (0.0082) \end{gathered}$	$\begin{gathered} 0.0116^{* * *} \\ (0.0043) \end{gathered}$
Polynomial minimizing AICc	Cubic	Quadratic	Quartic
Local nonparametric regressions			
Local linear using data-driven bandwidth	$\begin{gathered} 0.0142^{* * *} \\ (0.0036) \end{gathered}$	$\begin{gathered} 0.0215 * * * \\ (0.0041) \end{gathered}$	$\begin{gathered} 0.0103 * * * \\ (0.0030) \end{gathered}$
Data-driven bandwidth	10 months	7 months	6 months
Local quadratic using data-driven bandwidth	$\begin{gathered} 0.0194 * * * \\ (0.0039) \\ 7 \text { monthe } \end{gathered}$	$\begin{gathered} 0.0233 * * * \\ (0.0058) \\ 7 \text { monthe } \end{gathered}$	$\begin{gathered} 0.0131 * * * \\ (0.0026) \\ 8 \text { months } \end{gathered}$

Note: $* * p<0.05, * * * p<0.01$

Regression Estimates

Regression type	All (1)	Males (2)	Females (3)
Global parametric regressions (bandwidth $=12$ months)			
Quadratic regression	$\begin{gathered} 0.0135 * * * \\ (0.0043) \end{gathered}$	$\begin{gathered} 0.0185 * * * \\ (0.0049) \end{gathered}$	$\begin{gathered} 0.0058 \\ (0.0049) \end{gathered}$
Cubic regression	$\begin{gathered} 0.0197 * * * \\ (0.0049) \end{gathered}$	$\begin{gathered} 0.0236 * * * \\ (0.0060) \end{gathered}$	$\begin{gathered} 0.0138 * * * \\ (0.0047) \end{gathered}$
Quartic regression	$\begin{gathered} 0.0193 * * * \\ (0.0051) \end{gathered}$	$\begin{gathered} 0.0243 * * * \\ (0.0082) \end{gathered}$	$\begin{gathered} 0.0116 * * * \\ (0.0043) \end{gathered}$
Polynomial minimizing AICc	Cubic	Quadratic	Quartic
Local nonparametric regressions			
Local linear using data-driven bandwidth	$\begin{gathered} 0.0142 * * * \\ (0.0036) \end{gathered}$	$\begin{gathered} 0.0215 * * * \\ (0.0041) \end{gathered}$	$\begin{gathered} 0.0103 * * * \\ (0.0030) \end{gathered}$
Data-driven bandwidth	10 months	7 months	6 months
Local quadratic using data-driven bandwidth Data-driven bandwidth	$\begin{gathered} 0.0194 * * * \\ (0.0039) \\ 7 \text { months } \end{gathered}$	$\begin{gathered} 0.0233 * * * \\ (0.0058) \end{gathered}$ $7 \text { months }$	$\begin{gathered} 0.0131 * * * \\ (0.0026) \end{gathered}$

Regression Estimates

$\left.\begin{array}{lccc}\hline \hline \text { Regression type } & \text { All } & \text { Males } & \text { Females } \\ \text { (1) }\end{array}\right]$

Regression Estimates

Regression type	All (1)	Males (2)	Females (3)
Global parametric regressions (bandwidth $=12$ months)			
Quadratic regression	$\begin{gathered} 0.0135 * * * \\ (0.0043) \end{gathered}$	$\begin{gathered} 0.0185 * * * \\ (0.0049) \end{gathered}$	$\begin{gathered} 0.0058 \\ (0.0049) \end{gathered}$
Cubic regression	$\begin{gathered} 0.0197 * * * \\ (0.0049) \end{gathered}$	$\begin{gathered} 0.0236 * * * \\ (0.0060) \end{gathered}$	$\begin{gathered} 0.0138 * * * \\ (0.0047) \end{gathered}$
Quartic regression	$\begin{gathered} 0.0193 * * * \\ (0.0051) \end{gathered}$	$\begin{gathered} 0.0243 * * * \\ (0.0082) \end{gathered}$	$\begin{gathered} 0.0116 * * * \\ (0.0043) \end{gathered}$
Polynomial minimizing AICc	Cubic	Quadratic	Quartic
Local nonparametric regressions			
Local linear using data-driven bandwidth	$\begin{gathered} 0.0142 * * * \\ (0.0036) \end{gathered}$	$\begin{gathered} 0.0215 * * * \\ (0.0041) \end{gathered}$	$\begin{gathered} 0.0103 * * * \\ (0.0030) \end{gathered}$
Data-driven bandwidth	10 months	7 months	6 months
Local quadratic using data-driven bandwidth	$\begin{gathered} 0.0194 * * * \\ (0.0039) \end{gathered}$	$\begin{gathered} 0.0233 * * * \\ (0.0058) \end{gathered}$	$\begin{gathered} 0.0131 * * * \\ (0.0026) \end{gathered}$
Data-driven bandwidth	7 months	7 months	8 months

Additional Checks

- Using daily or weekly counts
- In the parametric regressions:
- Adding year-of-birth fixed effects
- Adding month-of-death fixed effects
- Using Social Security eligibility dates
- Varying the bandwidth
- Focus on local linear and global quadratic
- Donut-hole techniques
- Placebo techniques
- No effect at ages 61 or 63
- Estimate discontinuity at all ages between 57 and 67

Distribution of Placebo Male Mortality Estimates for +/- 60 Months of Age 62

A: Local linear specification using CCTcalculated bandwidths

B: Global quadratic specification using a bandwidth of 12 months

III. Heterogeneity and Potential Mechanisms

Demographics: Marital Status

	Local linear (1)	Global quadratic (2)	Fraction deaths (3)
Married	$\begin{gathered} 0.0130^{* *} \\ (0.0058) \\ 6 \text { months } \end{gathered}$	$\begin{gathered} 0.0081 \\ (0.0057) \\ 12 \text { months } \end{gathered}$	65.1\%
Not married	$\begin{gathered} \hline 0.0415^{* * *} \\ (0.0079) \\ 6 \text { months } \end{gathered}$	$\begin{gathered} 0.0377 * * * \\ (0.0107) \\ 12 \text { months } \\ \hline \end{gathered}$	34.9\%
- Single	$\begin{gathered} \hline 0.0558 * * * \\ (0.0056) \\ 6 \text { months } \end{gathered}$	$\begin{gathered} \hline 0.0514 * * * \\ (0.0111) \\ 12 \text { months } \end{gathered}$	9.9\%
- Divorced	$\begin{gathered} 0.0305 * * * \\ (0.0111) \\ 8 \text { months } \end{gathered}$	$\begin{gathered} 0.0337 * * \\ (0.0137) \\ 12 \text { months } \end{gathered}$	18.9\%
- Widowed	$\begin{gathered} 0.0330 \\ (0.0202) \\ 11 \text { months } \end{gathered}$	$\begin{gathered} 0.0262 \\ (0.0248) \\ 12 \text { months } \end{gathered}$	6.2\%

Demographics: Educ. Attainment

	Local linear (1)	Global quadratic (2)	Fraction deaths (3)
Did not complete	$0.0303^{* * *}$	$0.0275^{* *}$	27.6%
high school	(0.0103)	(0.0115)	
	8 months	12 months	
Completed high	0.0087	0.0099	56.5%
school, not college	(0.0050)	(0.0066)	
	7 months	12 months	
Completed college	0.0146	0.0187	15.9%
	(0.0146)	(0.0181)	
	8 months	12 months	

Heterogeneity: Place of Death

	Local linear (4)	Global quadratic (5)	Fraction deaths (6)
Out of hospital/ institution			
	$0.0339^{* * *}$	$0.0323^{* * *}$	34.6%
	(0.0074)	(0.0073)	
	12 months	12 months	
In nursing home/ institution	0.0124	0.0130	58.5%
	(0.0064)	(0.0070)	
	11 months	12 months	
	-0.0022	-0.0079	6.2%
	(0.0161)	(0.0194)	
	8 months	12 months	

Heterogeneity: Cause of Death

	Local linear (4)	Global quadratic (5)	Fraction deaths (6)
Heart and lung conditions	0.0250**	0.0135	39.2\%
	(0.0106)	(0.0119)	
- Heart attacks	0.0159	0.0072	19.4\%
	(0.0138)	(0.0172)	
- COPD	$0.0696^{* * *}$	$0.0496 * *$	4.2\%
	(0.0089)	(0.0180)	
- Not heart attacks or COPD	0.0064	0.0118	15.6\%
	(0.0106)	(0.0115)	
Cancers	0.0262***	0.0263***	33.6\%
	(0.0072)	(0.0084)	
- Lung cancer	0.0531***	0.0510***	13.1\%
	(0.0097)	(0.0108)	
- Not lung cancer	0.0099	0.0106	20.6\%
	(0.0080)	(0.0092)	
External causes	0.0314***	0.0399**	5.0\%
	(0.0103)	(0.0163)	
All other causes	0.0113	0.0109	22.1\%
	(0.0109)	(0.0106)	

Potential Mechanisms

1. Income from Social Security ("Unhealthy" consumption)

- Payday effects
- Pattern of results isn't consistent with previous literature on payday effects (Evans and Moore 2014)
- Effect of more resources
- Results are similar across cohorts with different levels of benefits
- Patterns of claiming are similar across gender, but mortality patterns are not
- Patterns of claiming across socioeconomic characteristics of males not consistent with patterns in mortality

Potential Mechanisms

2. Retirement from labor force/decrease in work

- Does heterogeneity in retirement match heterogeneity in mortality effects?

3. Change in health insurance status

- Does heterogeneity in health insurance match heterogeneity in mortality effects?

Workforce Outcomes

Labor Force Participation

Correlation is -0.6194

Currently Working for Pay

Correlation is -0.656

Health Insurance

Has Health Insurance

Correlation is 0.0860

Number of Health Insurance Plans

Correlation is -0.0549

Mechanisms

Males, weekdays 8am-6pm vs. other times

Females, weekdays 8am-6pm vs. other times

Notes: These figures are based on Actigraph accelerometer data collected from National Health and Nutritional Examination Survey (NHANES) 2003/04 and 2005/06 participants. Sedentary is defined as less than 100 counts per minute and outcome measured is the fraction of sedentary time when the accelerometer was worn. Participants are included if they were aged 60 to 63 and wore their accelerometer between 8 am and 6 pm Monday and Friday. The sample consists of 92 males and 87 females.

Conclusion

- Clear increase in male mortality at age 62
- If attributed to Social Security eligibility, indicates negative health effects among age 62 claimants
- Suggestive evidence that may not be receipt of Social Security itself, but concurrent changes
- RD design makes it difficult to assess how local these mortality effects are

Thanks.

Extra Slides

Robustness of Estimates to Bandwidth

- Re-estimate at monthly intervals from 6-24 months

Robustness of Estimates to Bandwidth

Effect of Extra Regression Controls

Regression type		Extra controls	
	Main estimate (1)	Year of birth FE (2)	Month of death FE (3)
Bandwidth $=12$ months			
Global quadratic	$\begin{gathered} 0.0135 * * * \\ (0.0043) \end{gathered}$	$\begin{gathered} 0.0132 * * * \\ (0.0039) \end{gathered}$	$\begin{gathered} 0.0133 * * * \\ (0.0041) \end{gathered}$
			12 months
Global cubic	$\begin{gathered} 0.0197 * * * \\ (0.0049) \end{gathered}$	$\begin{gathered} 0.0195 * * * \\ (0.0043) \end{gathered}$	$\begin{gathered} 0.0213 * * * \\ (0.0039) \end{gathered}$
	12 months	12 months	12 months
Global quartic	$\begin{gathered} 0.0193 * * * \\ (0.0051) \end{gathered}$	$\begin{gathered} 0.0187 * * * \\ (0.0043) \end{gathered}$	$\begin{gathered} 0.0208 * * * \\ (0.0041) \end{gathered}$
	12 months	12 months	12 months

Using Daily and Weekly Counts

Regression type	Unit of observation		
	Main	Daily	Weekly
	estimate	data	data
	(1)	(4)	(5)

Global parametric regressions (bandwidth $=12$	months)		
Global quadratic	$0.0135^{* * *}$	$0.0132^{* * *}$	$0.0137^{* *}$
	(0.0043)	(0.0049)	(0.0067)
	12 months	365 days	52 weeks
Global cubic	$0.0197^{* * *}$	$0.0204^{* * *}$	$0.0200^{* *}$
	(0.0049)	(0.0067)	(0.099)
	12 months	365 days	52 weeks
Global quartic	$0.0193^{* * *}$	$0.0224^{* * *}$	$0.0235^{* *}$
	(0.0051)	(0.0081)	(0.0114)
	12 months	365 days	52 weeks
Local nonparametric regressions			
Local linear	$0.0142^{* * *}$	$0.0135^{* * *}$	$0.0223^{* *}$
	(0.0036)	(0.0047)	(0.0105)
CCT bandwidth	10 months	305 days	18 weeks
Local quadratic	$0.0194^{* * *}$	$0.0221^{* * *}$	$0.0239 * *$
CCT bandwidth	(0.0039)	(0.0077)	(0.0115)
	7 months	218 days	27 weeks

Using Social Security Eligibility Dates

Regression type	Main estimate (1)	$\begin{gathered} \hline \hline \text { Using SS } \\ \text { eligibility date } \\ (6) \end{gathered}$
Global parametric regressions (bandwidth $=12$ months)		
Global quadratic	0.0135***	0.0134
	(0.0043)	(0.0084)
	12 months	12 months
Global cubic	0.0197***	0.0254***
	(0.0049)	(0.0068)
	12 months	12 months
Global quartic	0.0193***	0.0333***
	(0.0051)	(0.0065)
	12 months	12 months
Local nonparametric regressions		
Local linear	0.0142***	0.0166**
	(0.0036)	(0.0074)
CCT bandwidth	10 months	8 months
Local quadratic	0.0194***	0.0359***
	(0.0039)	(0.0043)
CCT bandwidth	7 months	6 months

Mortality at Age 61 and 63 - Males

Males - Age 61

Males - Age 63

Mortality at Age 61 and 63 - Females

Females - Age 61

Females - Age 63

Changes to RD Specification

Discontinuity Estimate
Global quadratic regression
$0.0185^{* * *}$ (0.0049)

+ Dummies 1-3 months after 62
0.0219
(0.00114)
+ Dummies 1-3 months before 62
0.0247
(0.0126)

Model Fit using Placebo Locations, Quadratic

Males

Females

