Evaluating Long-Term Care Policy Options, Taking the Family Seriously

CIRANO Workshop: The Design and Evaluation of Long-Term Care Policy

Daniel Barczyk (McGill) and Matthias Kredler (Carlos III)

28 April 2016
Our question

What are the effects of LTC policies?

- Evaluate policy options in the U.S. context based on . . .
 - Germany’s public LTC insurance program, and
 - changes to the size in Medicaid spending

- . . . for:
 - families’ behavior: will government insurance merely crowd-out family insurance?
 - labor supply of caregivers
 - the government budget
 - savings rates
 - welfare for young and old generations
Our main contributions

- Document importance of family-provided care and its economic correlates using the HRS

- Build fully-dynamic non-cooperative model with altruistically- and exchange-motivated transfers
 - allows for savings for both child and parent within family
 - gives rise to variety of care arrangements and its financing

- Family as partial insurance against LTC risk
 - implications for precautionary savings

- Calibrate model, using a quantitatively realistic life cycle, family, and risk structure
 - analyze a set of policy reforms
 - open up family margin in response to policy changes
Data summary I

Sample: HRS (2000-2010) respondents with at least one helper due to functional limitations.

- Almost 2/3 of all hours of care are provided informally.

- Few heavy helpers provide lion’s share of care:
 - Couple: spouse crucial.
 - Single: children and nursing homes are key.

- Determinants of informal care:
 - Presence of spouse/partner, children
 - Childrens’ opportunity cost in labor market
 - Elderly’s wealth in form of ”threshold effect”
Sample: *disabled* (90+ hours monthly care) widow(er)/single respondents

- **Care arrangements:**
 - 44.7% of respondents obtain informal care
 - 33.5% obtain Medicaid-financed nursing-home care
 - 21.8% are private payers of nursing-home care

- Typically one heavy-helper child (average age 48, female)

- Compensating (heavy-helper) children for informal care:
 - Co-residence common, typically a transfer to child
 - Signing over home ownership during lifetime
 - Potential bequests (protect assets from spend-down)
 - Rationalize through intra-family bargaining channel

- Heavy help also takes place without measurable compensation
Empirical motivation for modeling

Our data suggests a model in which:

1. IC is a feasible choice, though time intensive to provide
2. Vast majority of care goes to disabled elderly
3. One caregiver plays dominant role (spouse, child)
4. IC more likely with lower opportunity cost children
5. Caregiving children often receive compensation
Demographics

Continuous-time overlapping-generations (OLG) model:

- Population growth rate \(g \)

- Individuals have **two life stages**:
 1. Kid: 35 to 65 years old.
 2. Parent: 65 to 95 years old.

- Each **family** consists of two decision units:
 1. **Parent** generation of age \(j_p \in [65, 95) \).
 2. **Kid** generation of age \(j_k = j_p - 30 \).
Parent generation

- Parent’s state:
 1. age $j_p \in [65, 95)$,
 2. wealth $a^p \geq 0$,
 3. fixed productivity type $\varepsilon_p \in E \equiv \{ e_1, \ldots, e_n \}$
 4. LTC state: $s \in \{0, 1\}$.

- Hazards:
 1. LTC: Start healthy, turn sick at hazard $\delta_s(j_p, \varepsilon_p)$. Sick state is absorbing.
 2. Death: Mortality hazard $\delta_d(j_p, \varepsilon_p, s)$
 3. Medical spending (non-LTC): event hazard $\delta_m(j_p, \varepsilon_p, s)$

- Parent household has $n^p(j_p, \varepsilon_p, s)$ members.
 - Always one female.
 - Husband dies alway slowly while $s = 0$, disappears when $s = 1$.
 - A measure of $s_m(j_p, \varepsilon_p)$ of males have LTC needs, while $s = 0$.
 - Of these, an exogenous fraction obtains IC from spouse.
Kid generation

- Kid generation's state:
 1. age $j_k = j_p - 30$,
 2. wealth $a^k \geq 0$,
 3. productivity $\varepsilon_k \in E$.

- Poisson process for ε_k with hazard matrix δ_ε.

- Households:
 1. The generation consists of $1 + \nu$ households
 2. Each household consists of two individuals

- Kid generation’s labor-earnings flow is:

$$wy(j_k, \varepsilon_k) \left[\beta + (1 - \beta)I(\text{marginal member works}) + \nu \right],$$

$y(j_k, \varepsilon_k)$: labor efficiency units,
$\beta \in [\frac{1}{2}, 1)$: male contribution to household income.
Generational transition

Parents either die:
- Randomly at age $j_p < 95 \Rightarrow$ assets a_p to kid generation.
- At age $j_p = 95$ with certainty.

Generational transition at $j_p = 95$:

1. Kid generation splits into $(1 + v)$ new parent households.
 - Keep last type: $\varepsilon_p = \varepsilon_k(65)$.
 - Split assets

2. Each new parent household is matched to new kid:
 - with same productivity
 - $j_k = 35$
 - $a_k = 0$
Incomplete markets with altruistic agents

We build on Barczyk & Kredler (2014a,b):

- a^p, a^k: Each generation saves in riskless asset
 - r: return
 - $a = 0$: no-borrowing constraint

- $g^p, g^k \geq 0$: Agents can give altruistically-motivated gifts to each other

- No commitment to future actions \Rightarrow removes indeterminacy in:
 - within-family wealth distribution
 - timing of transfers

\Rightarrow Equilibrium: Gifts only flow when recipient is constrained.
Care decision

When $s = 1$, family chooses one of the following (each instant):

1. $h = 1$: **Informal care (IC).**
 - Both parent and kid have to agree.
 - Monetary transfer $Q \geq 0$ from parent to kid
 \Rightarrow determined by Nash bargaining

2. $h = 0$: **Formal care**
 Once family chose $h = 0$, parent decides:
 a) $m = 1$: **Medicaid (MA).**
 - Parent must hand in all remaining wealth and pension flow.
 - Government provides consumption floor C_{ma}.
 b) $m = 0$: Buy **privately-paid care (PP)** on market.
Preferences: imperfect altruism

- Flow felicity:

\[u^k(c^k) = 2(1 + \nu)u\left(\frac{c^k}{\phi(2)(1 + \nu)}\right), \]

\[u^p(c^p; s, n^p) = \begin{cases}
 n^p u(c^p / \phi(n^p)) & \text{if healthy,} \\
 u(c^p) & \text{if IC,} \\
 u(c^p - \bar{C}_f) & \text{if PP,} \\
 u(C_{ma}) & \text{if MA.}
\end{cases} \]

- \(u(c) = c^{1-\gamma}/(1 - \gamma) \) with \(\gamma > 1 \),
- \(\phi(n) \): household equivalence scale

- Both agents maximize expected flow utility, discounted at rate \(\rho > 0 \):

\[U^k = u^k(c^k) + \alpha^k u^p(c^p; \cdot), \quad U^p = u^p(c^p; \cdot) + \alpha^p u^k(c^k). \]

where \(\alpha^p, \alpha^k \in [0, 1] \).
Production

There are two competitive sectors with constant-returns-to-scale technologies in labor:

1. consumption good (numeraire)
2. nursing homes: care services at price p_{bc}
 ⇒ We interpret $p_{bc} + c^p$ as private-pay (PP) nursing-home expenditures.
The government runs a balanced budget with the following items:

1. Regular policy:
 1.1 Income taxation.
 1.2 Social-security contributions and benefits.
 1.3 Covering medical shocks for broke agents.
 1.4 Other expenditures (fixed).

2. LTC policy:
 2.1 $p_{bc} + y_{ma}$: expenditures for MA nursing-home slot.
 2.2 s_{ic}: IC subsidy (to caregiver)
 2.3 s_{pp}: PP subsidy (to parent)
Timing protocol (at each t)

stage 1 Does IC generate surplus? Nash bargain pins down $Q \geq 0$

stage 2 Gift-giving, especially relevant if no IC

stage 3 No IC: parent decides Medicaid or private-pay nursing home

stage 4 Consumption-savings decision, unless Medicaid
Hamilton-Jacobi-Bellman (HJB) equations

- **States:**
 1. j: parent’s age
 2. $x = (a^k, a^p, \varepsilon^k, \varepsilon^p)$: family’s financial state
 3. $s \in \{0, 1\}$: LTC need if $s = 1$

- **If $a^p > 0$, $a^k > 0$ (no gifts, no Medicaid):**

 $$\rho V^k(j, x, 1) = V^k_j + \max_{c^k, h^k} \{ u^k(c^k) + \alpha^k u^p(c^p; \cdot) + \dot{a}^k V^k_{a^k} + \dot{a}^p V^k_{a^p} \} + JT^p,$$

 $$\rho V^p(j, x, 1) = V^p_j + \max_{c^p, h^p} \{ u^p(c^p; \cdot) + \alpha^p u(c^k) + \dot{a}^p V^p_{a^p} + \dot{a}^k V^p_{a^k} \} + JT^k,$$

 s.t. $h = h^k h^p$,

 $$\dot{a}^k = ra^k + wy(j, \varepsilon^k)(1 + \nu) + h[Q + s_{ic} - (1 - \beta)w(j, \varepsilon^k)] - c^k,$$

 $$\dot{a}^p = ra^p + n^p P(\varepsilon^p) - hQ - (p_f - s_{pp})(1 - h) - c^p - M^p.$$

- **When healthy ($s = 0$): remove red terms, add terms for LTC hazard.**

- **Constrained case ($a^p = 0, a^k = 0$): also altruistic gifts g^k, g^p.**
A recursive **Markov-perfect equilibrium** is given by value functions for the kid, \(V^k \), and the parent, \(V^p \), policy rules for the kid, \(\{g^k, c^k\} \), and the parent, \(\{g^p, m, c^p\} \), an informal-care (IC) rule, \(h \), and a transfer function, \(Q^* \), such that:

Given prices and a government policy, \(\{s_{ic}, s_{pp}, C_{ma}\} \),

1. the value function \(V^p \) satisfies the parent’s HJB, the maximum being attained by the policies \(\{g^p, m, c^p\} \), taking as given the kid’s policy rules, \(\{g^k, c^k\} \);

2. the value function \(V^k \) satisfies the kid’s HJB, the maximum being attained by the policies \(\{g^k, c^k\} \), taking as given the parent’s policy rules, \(\{g^p, m, c^p\} \);

3. the IC decision rule, \(h \), and the transfer rule, \(Q^* \), are the Nash-bargaining solution between kid and parent.
Characterizing the IC choice

Focus on case where both generations have positive wealth
⇒ conveys intuition for informal-care choice well

Backward induction:

stage 4 Consumption given by $c^i = (u_c)^{-1}(V^{i}_{a^i})$ for $i \in \{k, p\}$

stage 3 Medicaid is not chosen because $a^p > 0$

stage 2 Gifts are set to zero because $V^{i}_{a^i} > V^{i}_{a^i}$
 see Barczyk & Kredler (2014a,b)

stage 1 …
Backward induction: stage 1

- Evaluate the HJBs using stage 2-4 for:
 1. informal care, \(h = 1 \), and arbitrary transfer \(Q \geq 0 \)
 2. privately-paid care (PP), \(h = m = 0 \) and \(Q = 0 \)

\[\Rightarrow \text{subtract 2 from 1 to obtain surplus function} \]

- Kid’s surplus function from IC:

\[
S^k(Q) = (Q + s_{ic})V^k_{ak} + (\bar{C}_f + p_{bc} - s_{pp})V^k_{ap} - (\Delta y_{ic} V^k_{ak} + QV^k_{ap}).
\]

\[\text{marginal benefit} \quad \text{marginal cost} \]

- Special case 1: \(\alpha^k = \alpha^p = 1 \) (dynastic model)
 Dynasty chooses informal care iff \(\bar{C}_f + p_{bc} - s_{pp} \geq \Delta y_{ic} - s_{ic} \).

- Special case 2: \(\alpha^k = \alpha^p = 0 \) (selfish OLG model).
 Selfish child provides care iff \(Q + s_{ic} \geq \Delta y_{ic} \).
Kid’s reservation transfer

- The surplus S^k is linearly increasing in Q.
- Solving $S^k(Q) = 0$ yields kid’s reservation transfer:

$$Q^k = \frac{(\Delta y_{ic} - s_{ic}) V^k_{a_k} - (\bar{C}_f + p_{bc} - s_{pp}) V^k_{a_p}}{V^k_{a_k} - V^k_{a_p}} > 0$$

⇒ lowest Q for which kid is willing to provide care

- Q^k is:
 1. increasing in Δy_{ic} and s_{pp}
 2. decreasing in p_{bc} and s_{ic},
 3. decreasing in parent’s IC preference \bar{C}_f.
Parent’s willingness to pay and bargaining result

- Parent’s surplus function from informal care (IC):

\[
S^p(Q) = (\bar{C}_f + p_{bc} - s_{pp})V_{ap}^p + (Q + s_{ic})V_{ak}^p - (QV_{ap}^p + \Delta y_{ic} V_{ak}^p).
\]

- The surplus \(S^p \) is linearly decreasing in \(Q \).

- Solving \(S^p(Q) = 0 \) yields the parent’s willingness to pay for IC:

\[
\bar{Q}^p = \left(\frac{\bar{C}_f + p_{bc} - s_{pp})V_{ap}^p - (\Delta y_{ic} - s_{ic})V_{ak}^p}{V_{ap}^p - V_{ak}^p} \right) > 0
\]

\(\Rightarrow \) highest \(Q \) for which parent wants IC.

- \(\bar{Q}^p \) is:

1. increasing in IC preference \(\bar{C}_f \),
2. increasing in cost of formal care \(p_{bc} \), and subsidy \(s_{ic} \), and
3. decreasing in kid’s net-income loss \(\Delta y_{ic} \) and \(s_{pp} \).

- IC takes place iff \(\bar{Q}^p \geq Q^k \)
Model calibration
Calibration: direct identification

Estimate directly from HRS data:

- $\delta_s(j^p, \epsilon^p)$: LTC hazards
- $\delta_d(j^p, \epsilon^p, s)$: mortality hazards
- $\delta_m(j^p, \epsilon^p, s)$: medical-event hazard rate; given event, out-of-pocket medical expenditures is drawn from $F_m(M)$ (excluding nursing home).
- $n^p(j^p, \epsilon^p, s = 0)$: number of surviving men to determine HH size
- $s_m(j^p, \epsilon^p)$: fraction of disabled married individuals. Of these, get fraction of disabled husbands who receive IC.

\Rightarrow care arrangements in couples

From government statistics:

- Medicaid reimbursement rate
- ρ_{bc}: care-related nursing-home cost
- Taxes and social-security system

Standard:

- h_ϵ, E: Productivity process (based on U.S. Census, 2000).
Calibration targets and identification

<table>
<thead>
<tr>
<th>Calibration target</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median wealth (ages 70-75)</td>
<td>$178,600</td>
<td>$178,600</td>
</tr>
<tr>
<td>Informal care</td>
<td>44.7%</td>
<td>44.7%</td>
</tr>
<tr>
<td>Total PP/MA spending</td>
<td>0.821</td>
<td>0.821</td>
</tr>
<tr>
<td>Parent (healthy) gift</td>
<td>$1,548</td>
<td>$1,548</td>
</tr>
<tr>
<td>Kid gift to parent (PP)</td>
<td>$620</td>
<td>$620</td>
</tr>
<tr>
<td>Exchange transfer</td>
<td>$9,878</td>
<td>$9,878</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>Discount rate</td>
<td>0.1280</td>
</tr>
<tr>
<td>\bar{C}_f</td>
<td>Formal-care consumption penalty</td>
<td>$4,050</td>
</tr>
<tr>
<td>C_{ma}</td>
<td>Medicaid consumption floor</td>
<td>$4,650</td>
</tr>
<tr>
<td>α^p</td>
<td>Parent altruism</td>
<td>0.4781</td>
</tr>
<tr>
<td>α^k</td>
<td>Kid altruism</td>
<td>2.7×10^{-4}</td>
</tr>
<tr>
<td>ω</td>
<td>Kid bargaining weight</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Notes: coefficient of relative risk aversion is $\gamma = 3.8$ following De Nardi et al. (2010)

- median wealth \Rightarrow rate of time preference ρ
- percentage of IC recipients \Rightarrow consumption penalty from nursing home \bar{C}_f
- ratio total PP/MA spending \Rightarrow consumption floor C_{ma}
- mean gifts from and to healthy parents \Rightarrow altruism α^k, α^p
- exchange transfer \Rightarrow kid’s bargaining weight ω
Results
The model in action: care choices and dynamics

- Productivity: kid high, parent low
- Productivity: kid high, parent high
- Productivity: kid low, parent low
- Productivity: kid low, parent high

Diagram showing different dynamics based on productivity levels.
Policy experiments I: Germany

Implement Germany’s LTC policy (in year 2000 dollars):

1. Informal care (IC) subsidy (s_{ic}), annual $4,375
2. Private-payer (PP) subsidy (s_{pp}), annual $11,460

<table>
<thead>
<tr>
<th>LTC policy</th>
<th>Care type (%)</th>
<th>Costs (as $\Delta \tau$)</th>
<th>Ex-ante CEV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC</td>
<td>MA</td>
<td>PP</td>
</tr>
<tr>
<td>Status quo</td>
<td>44.7%</td>
<td>33.5%</td>
<td>21.8%</td>
</tr>
<tr>
<td>$s_{ic} \uparrow$</td>
<td>59.0</td>
<td>23.6</td>
<td>17.4</td>
</tr>
<tr>
<td>$s_{ic} \uparrow$ (to young)</td>
<td>59.0</td>
<td>23.6</td>
<td>17.4</td>
</tr>
<tr>
<td>$s_{pp} \uparrow$</td>
<td>23.6</td>
<td>32.1</td>
<td>44.3</td>
</tr>
<tr>
<td>$s_{ic} \uparrow + s_{pp} \uparrow$</td>
<td>44.0</td>
<td>22.9</td>
<td>33.1</td>
</tr>
</tbody>
</table>

Notes: IC = informal care; MA = Medicaid; PP = private payer

- $s_{ic} \uparrow$ crowds-in IC and crowds-out MA:
 - cost of subsidy \Rightarrow tax hike
 - less reliance on Medicaid \Rightarrow tax cut
 - less labor supply \Rightarrow tax hike
- $s_{pp} \uparrow$ crowds-out IC but crowds-out MA only slightly
- $s_{ic} \uparrow + s_{pp} \uparrow$ leaves IC unchanged, crowds-out MA, crowds-in PP
Policy experiments II: Changes to Medicaid

Changes to Medicaid: 20% change in y_{ma}

assumption: consumption-floor changes by the same percentage

<table>
<thead>
<tr>
<th>LTC policy</th>
<th>Care type (%)</th>
<th>Costs (as $\Delta \tau$)</th>
<th>Ex-ante CEV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC</td>
<td>MA</td>
<td>PP</td>
</tr>
<tr>
<td>Status quo</td>
<td>44.7%</td>
<td>33.5%</td>
<td>21.8%</td>
</tr>
<tr>
<td>MA↑</td>
<td>40.3</td>
<td>40.2</td>
<td>19.5</td>
</tr>
<tr>
<td>MA↓</td>
<td>50.1</td>
<td>25.5</td>
<td>24.4</td>
</tr>
<tr>
<td>MA↓ + s_{ic}↑</td>
<td>62.8</td>
<td>18.1</td>
<td>19.2</td>
</tr>
</tbody>
</table>

Notes: IC = informal care; MA = Medicaid; PP = private payer

- MA↑ crowds-out IC but does not help to expand tax base from additional labor supply
- MA↓ crowds-in IC, tax rate falls – not enough to avoid welfare loss in short run
- MA↓ + s_{ic}↑ crowds-in IC, PP changes little, and crowds-out MA substantially!
Changes to Medicaid: Current welfare

CEV for currently-alive generations (children and parents)

<table>
<thead>
<tr>
<th>group</th>
<th>MA ↓</th>
<th>MA ↓+s_{ic} ↑</th>
<th></th>
<th>MA ↓</th>
<th>MA ↓+s_{ic} ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>children</td>
<td>parents</td>
<td></td>
<td>children</td>
<td>parents</td>
</tr>
<tr>
<td>all</td>
<td>average</td>
<td>% + for</td>
<td>average</td>
<td>% + for</td>
<td>average</td>
</tr>
<tr>
<td></td>
<td>-0.889</td>
<td>3.5%</td>
<td>-3.907</td>
<td>6.4%</td>
<td>+0.374</td>
</tr>
<tr>
<td>below 80</td>
<td>-0.415</td>
<td>7.1%</td>
<td>-3.269</td>
<td>6.5%</td>
<td>+0.367</td>
</tr>
<tr>
<td>above 80</td>
<td>-1.175</td>
<td>0.0%</td>
<td>-5.728</td>
<td>6.2%</td>
<td>+0.566</td>
</tr>
<tr>
<td>low-prod kid</td>
<td>-1.360</td>
<td>5.1%</td>
<td>-4.779</td>
<td>0.0%</td>
<td>+0.235</td>
</tr>
<tr>
<td>high-prod kid</td>
<td>-0.415</td>
<td>1.5%</td>
<td>-2.864</td>
<td>15.3%</td>
<td>+0.484</td>
</tr>
<tr>
<td>low-prod parent</td>
<td>-0.784</td>
<td>8.0%</td>
<td>-6.896</td>
<td>0.1%</td>
<td>+0.377</td>
</tr>
<tr>
<td>high-prod parent</td>
<td>-0.478</td>
<td>1.0%</td>
<td>-1.240</td>
<td>14.7%</td>
<td>+0.387</td>
</tr>
</tbody>
</table>

Notes: average is over CEV. “% + for” means fraction out of the group with positive CEV.

- MA↓ widespread welfare losses especially for poor and old
- MA↓ + s_{ic} ↑ most welfare losses are undone. Exception: low productivity parents.
Conclusions

- **Empirical**: Importance of informal caregiving and economic determinants of informal care in the U.S.

- **Theoretical**:
 1. Barczyk & Kredler (2014a,b):
 - **Determinacy** for intra-family wealth distribution and transfers
 - Both agents can save.
 2. This paper:
 - Calibrated quantitative OLG model
 - Both, altruistically-motivated and exchange-motivated transfers
 - Variety of empirically plausible care arrangements

- **Policy**:
 1. MA-spending-cut: increases IC and decreases payroll tax; disliked by current generations but liked by future generations
 2. MA-spending-cut with IC subsidy: strong increase in IC and large decrease in MA; **cheap policy**, liked by majority of current and future generations
 3. German-style policy (menu of IC and PP subsidy): very popular among current generations but largest tax hike. **Better**: only IC subsidy (PP subsidy benefit those who need it least)
Extra slides
Literature

1. Macro literature on old-age risks: no family
 - *Retirement savings puzzle*
 - Medical-expense risk
 Hubbard et al. (1995), DeNardi et al. (2010)
 - LTC is major uninsured financial risk
 - *Medicaid aversion* (survey evidence)
 Ameriks et al. (2011)
 - Nursing-home risk drives precautionary savings
 Kopecky & Koreshkova (2014)
 - Analysis of Medicare and Medicaid policy
 Attanasio et al. (2011), DeNardi et al. (2013), Braun et al. (2015)

2. Applied micro literature: care crowds out labor supply of females ⇒ macro implications not studied
 Johnson & Sasso (2006), Van Houtven et al. (2013), Skira (2014)

⇒ We aim to bring together 1. and 2.
Males
- high-school dropout: 1.82 exp. LTC yrs
- high school: 1.26 exp. LTC yrs
- some college: 1.12 exp. LTC yrs
- college: 1.13 exp. LTC yrs

Females
- high-school dropout: 2.73 exp. LTC yrs
- high school: 2.13 exp. LTC yrs
- some college: 1.91 exp. LTC yrs
- college: 2.15 exp. LTC yrs

Males
- high-school dropout: 12.30 life exp.
- high school: 13.68 life exp.
- some college: 14.29 life exp.
- college: 15.82 life exp.

Females
- high-school dropout: 14.92 life exp.
- high school: 18.52 life exp.
- some college: 19.39 life exp.
- college: 19.44 life exp.
Table: Females: life expectancy at age 65 by educational attainment.

<table>
<thead>
<tr>
<th>Source</th>
<th>< high school</th>
<th>high school</th>
<th>some college</th>
<th>college</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>14.92</td>
<td>18.52</td>
<td>19.39</td>
<td>19.44</td>
</tr>
<tr>
<td>Model</td>
<td>15.79</td>
<td>18.94</td>
<td>19.64</td>
<td>19.76</td>
</tr>
</tbody>
</table>

Table: Females: expected duration of LTC, conditional on LTC, by educational attainment.

<table>
<thead>
<tr>
<th>Source</th>
<th>< high school</th>
<th>high school</th>
<th>some college</th>
<th>college</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>2.73</td>
<td>2.13</td>
<td>1.91</td>
<td>2.15</td>
</tr>
<tr>
<td>Model</td>
<td>2.35</td>
<td>1.98</td>
<td>1.83</td>
<td>2.05</td>
</tr>
</tbody>
</table>

Table: Males: life expectancy at age 65 by educational attainment.

<table>
<thead>
<tr>
<th>Source</th>
<th>< high school</th>
<th>high school</th>
<th>some college</th>
<th>college</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>12.30</td>
<td>13.68</td>
<td>14.29</td>
<td>15.82</td>
</tr>
<tr>
<td>Model</td>
<td>12.86</td>
<td>13.94</td>
<td>14.60</td>
<td>16.03</td>
</tr>
</tbody>
</table>

Table: Males: expected duration of LTC, conditional on LTC, by educational attainment.

<table>
<thead>
<tr>
<th>Source</th>
<th>< high school</th>
<th>high school</th>
<th>some college</th>
<th>college</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>1.82</td>
<td>1.28</td>
<td>1.12</td>
<td>1.13</td>
</tr>
<tr>
<td>Model</td>
<td>1.48</td>
<td>1.15</td>
<td>1.01</td>
<td>1.07</td>
</tr>
</tbody>
</table>