Evaluating Long-Term Care Policy Options, Taking the Family Seriously CIRANO Workshop: The Design and Evaluation of Long-Term Care Policy

Daniel Barczyk (McGill) and Matthias Kredler (Carlos III)

28 April 2016

Our question

What are the effects of LTC policies?

- Evaluate policy options in the U.S. context based on
 - Germany's public LTC insurance program, and
 - changes to the size in Medicaid spending
- ... for:
 - families' behavior: will government insurance merely crowd-out family insurance?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- labor supply of caregivers
- the government budget
- savings rates
- welfare for young and old generations

Our main contributions

- Document importance of family-provided care and its economic correlates using the HRS
- Build fully-dynamic non-cooperative model with altruistically- and exchange-motivated transfers
 - \Rightarrow allows for savings for both child and parent within family
 - \Rightarrow gives rise to variety of care arrangements and its financing
- Family as partial insurance against LTC risk
 - \Rightarrow implications for precautionary savings
- Calibrate model, using a quantitatively realistic life cycle, family, and risk structure

▲日▶▲□▶▲□▶▲□▶ □ のQ@

- \Rightarrow analyze a set of policy reforms
- \Rightarrow open up family margin in response to policy changes

Data summary I

Sample: HRS (2000-2010) respondents with at least one helper due to functional limitations.

▲日▶▲□▶▲□▶▲□▶ □ のQ@

- Almost 2/3 of all hours of care are provided informally.
- Few heavy helpers provide lion's share of care:
 - Couple: spouse crucial.
 - Single: children and nursing homes are key.
- Determinants of informal care:
 - Presence of spouse/partner, children
 - Childrens' opportunity cost in labor market
 - Elderly's wealth in form of "threshold effect"

Data summary II

Sample: disabled (90+ hours monthly care) widow(er)/single respondents

Care arrangements:

- 44.7% of respondents obtain informal care
- 33.5% obtain Medicaid-financed nursing-home care
- 21.8% are private payers of nursing-home care
- Typically one heavy-helper child (average age 48, female)
- Compensating (heavy-helper) children for informal care:
 - Co-residence common, typically a transfer to child
 - Signing over home ownership during lifetime
 - Potential bequests (protect assets from spend-down)
 - \Rightarrow Rationalize through intra-family bargaining channel
- Heavy help also takes place without measurable compensation

Empirical motivation for modeling

Our data suggests a model in which:

- 1. IC is a feasible choice, though time intensive to provide
- 2. Vast majority of care goes to disabled elderly
- 3. One caregiver plays dominant role (spouse, child)
- 4. IC more likely with lower opportunity cost children
- 5. Caregiving children often receive compensation

▲日▶▲□▶▲□▶▲□▶ □ のQ@

Demographics

Continuous-time overlapping-generations (OLG) model:

- Population growth rate g
- Individuals have two life stages:
 - 1. Kid: 35 to 65 years old.
 - 2. Parent: 65 to 95 years old.
- Each family consists of two decision units:
 - 1. **Parent** generation of age $j_{\rho} \in [65, 95)$.

▲日▶▲□▶▲□▶▲□▶ □ のQ@

2. **Kid** generation of age $j_k = j_p - 30$.

Parent generation

- Parent's state:
 - age j_p ∈ [65,95),
 - 2. wealth $a^p \ge 0$,
 - 3. fixed productivity type $\varepsilon_{\rho} \in E \equiv \{e_1, \dots, e_n\}$
 - 4. LTC state: $s \in \{0, 1\}$.
- Hazards:
 - 1. LTC: Start healthy, turn sick at hazard $\delta_s(j_p, \varepsilon_p)$. Sick state is absorbing.
 - 2. Death: Mortality hazard $\delta_d(j_\rho, \varepsilon_\rho, s)$
 - 3. Medical spending (non-LTC): event hazard $\delta_m(j_p, \varepsilon_p, s)$
- Parent household has $n^{p}(j_{p}, \varepsilon_{p}, s)$ members.
 - Always one female.
 - Husband dies alway slowly while s = 0, disappears when s = 1.
 - A measure of $s_m(j_p, \varepsilon_p)$ of males have LTC needs, while s = 0.
 - Of these, an exogenous fraction obtains IC from spouse.

Kid generation

- Kid generation's state:
 - 1. age $j_k = j_p 30$,
 - 2. wealth $a^k \ge 0$,
 - 3. productivity $\varepsilon_k \in E$.
- Poisson process for ε_k with hazard matrix δ_{ε} .
- Households:
 - 1. The generation consists of 1 + v households
 - 2. Each household consists of two individuals
- Kid generation's labor-earnings flow is:

$$wy(j_k, \varepsilon_k) \Big[\underbrace{\beta}_{\substack{\text{male} \\ \text{marginal hh}}} + \underbrace{(1 - \beta)\mathbb{I}(\text{marginal member works})}_{\text{female}} + \underbrace{\nu}_{\text{infra-marginal hh}} \Big],$$

 $y(j_k, \varepsilon_k)$: labor efficiency units, $\beta \in [\frac{1}{2}, 1)$: male contribution to household income.

Generational transition

Parents either die:

- ▶ Randomly at age $j_p < 95 \Rightarrow$ assets a_p to kid generation.
- At age $j_p = 95$ with certainty.

Generational transition at $j_p = 95$:

1. Kid generation splits into (1 + v) new parent households.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Keep last type: $\varepsilon_p = \varepsilon_k(65)$.
- Split assets
- 2. Each new parent household is matched to new kid:
 - with same productivity

Incomplete markets with altruistic agents

We build on Barczyk & Kredler (2014a,b):

- a^p, a^k : Each generation saves in riskless asset
 - r: return
 - <u>a</u> = 0: no-borrowing constraint

• $g^{\rho}, g^{k} \geq 0$: Agents can give altruistically-motivated gifts to each other

- ► No commitment to future actions ⇒ removes indeterminacy in:
 - within-family wealth distribution
 - timing of transfers
- \Rightarrow **Equilibrium**: Gifts only flow when recipient is constrained.

Care decision

When s = 1, family chooses one of the following (each instant):

1. h = 1: Informal care (IC).

- Both parent and kid have to agree.
- Monetary transfer Q ≥ 0 from parent to kid ⇒ determined by Nash bargaining

2. h = 0: Formal care

Once family chose h = 0, parent decides:

- a) m = 1: Medicaid (MA).
 - Parent must hand in all remaining wealth and pension flow.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Government provides consumption floor C_{ma}.

b) *m* = 0: Buy **privately-paid care (PP)** on market.

Preferences: imperfect altruism

Flow felicity:

$$u^{k}(c^{k}) = 2(1+v)u\Big(\frac{c^{k}}{\phi(2)(1+v)}\Big),$$
$$u^{p}(c^{p}; s, n^{p}) = \begin{cases} n^{p}u\big(c^{p}/\phi(n^{p})\big) & \text{if healthy,} \\ u(c^{p}) & \text{if IC,} \\ u(c^{p}-\bar{C}_{f}) & \text{if PP,} \\ u(C_{ma}) & \text{if MA.} \end{cases}$$

•
$$u(c) = c^{1-\gamma}/(1-\gamma)$$
 with $\gamma > 1$,

• $\phi(n)$: household equivalence scale

► Both agents maximize expected flow utility, discounted at rate p > 0:

$$U^{k} = u^{k}(c^{k}) + \alpha^{k}u^{p}(c^{p}; \cdot), \qquad U^{p} = u^{p}(c^{p}; \cdot) + \alpha^{p}u^{k}(c^{k})$$

where $\alpha^{p}, \alpha^{k} \in [0, 1].$

Production

There are two competitive sectors with constant-returns-to-scale technologies in labor:

- 1. consumption good (numeraire)
- 2. nursing homes: care services at price p_{bc} \Rightarrow We interpret $p_{bc} + c^p$ as private-pay (PP) nursing-home expenditures.

▲日▶▲□▶▲□▶▲□▶ □ のQ@

Government

The government runs a balanced budget with the following items:

- 1. Regular policy:
 - 1.1 Income taxation.
 - 1.2 Social-security contributions and benefits.
 - 1.3 Covering medical shocks for broke agents.
 - 1.4 Other expenditures (fixed).
- 2. LTC policy:
 - 2.1 $p_{bc} + y_{ma}$: expenditures for MA nursing-home slot.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- 2.2 sic: IC subsidy (to caregiver)
- 2.3 *s*_{pp}: PP subsidy (to parent)

Timing protocol (at each *t*)

- stage 1 Does IC generate surplus? Nash bargain pins down $Q \ge 0$
- stage 2 Gift-giving, especially relevant if no IC
- stage 3 No IC: parent decides Medicaid or private-pay nursing home

▲日▶▲□▶▲□▶▲□▶ □ のQ@

stage 4 Consumption-savings decision, unless Medicaid

Hamilton-Jacobi-Bellman (HJB) equations

States:

1. *j*: parent's age 2. $x = (a^k, a^p, \varepsilon^k, \varepsilon^p)$: family's financial state 3. $s \in \{0, 1\}$: LTC need if s = 1

• If $a^p > 0$, $a^k > 0$ (no gifts, no Medicaid):

$$\begin{split} \rho \, V^{k}(j,x,1) &= V_{j}^{k} + \max_{c^{k},h^{k}} \left\{ u^{k}(c^{k}) + \alpha^{k} u^{p}(c^{p};\cdot) + \dot{a}^{k} V_{a^{k}}^{k} + \dot{a}^{p} V_{a^{p}}^{k} \right\} + JT^{p}, \\ \rho \, V^{p}(j,x,1) &= V_{j}^{p} + \max_{c^{p},h^{p}} \left\{ u^{p}(c^{p};\cdot) + \alpha^{p} u(c^{k}) + \dot{a}^{p} V_{a^{p}}^{p} + \dot{a}^{k} V_{a^{k}}^{p} \right\} + JT^{k}, \\ \text{s.t.} \quad h &= h^{k} h^{p}, \\ \dot{a}^{k} &= ra^{k} + wy(j,\varepsilon^{k})(1+v) + h[Q + s_{ic} - (1-\beta)w(j,\varepsilon^{k})] - c^{k}, \\ \dot{a}^{p} &= ra^{p} + n^{p} P(\varepsilon^{p}) - hQ - (p_{f} - s_{pp})(1-h) - c^{p} - M^{p}. \end{split}$$

- When healthy (s = 0): remove red terms, add terms for LTC hazard.
- Constrained case ($a^{p} = 0, a^{k} = 0$): also altruistic gifts g^{k}, g^{p} .

Equilibrium definition

A recursive **Markov-perfect equilibrium** is given by value functions for the kid, V^k , and the parent, V^p , policy rules for the kid, $\{g^k, c^k\}$, and the parent, $\{g^p, m, c^p\}$, an informal-care (IC) rule, *h*, and a transfer function, Q^* , such that:

Given prices and a government policy, $\{s_{ic}, s_{pp}, C_{ma}\}$,

- the value function V^p satisfies the parent's HJB, the maximum being attained by the policies {g^p, m, c^p}, taking as given the kid's policy rules, {g^k, c^k};
- 2. the value function V^k satisfies the kid's HJB, the maximum being attained by the policies $\{g^k, c^k\}$, taking as given the parent's policy rules, $\{g^p, m, c^p\}$;
- 3. the IC decision rule, *h*, and the transfer rule, *Q*^{*}, are the Nash-bargaining solution between kid and parent.

Characterizing the IC choice

Focus on case where both generations have positive wealth

 \Rightarrow conveys intuition for informal-care choice well

Backward induction:

stage 4 Consumption given by $c^i = (u_c)^{-1}(V_{a^i}^i)$ for $i \in \{k, p\}$

stage 3 Medicaid is not chosen because $a^{p} > 0$

stage 2 Gifts are set to zero because $V_{a^{i}}^{i} > V_{a^{i}}^{i}$ see Barczyk & Kredler (2014a,b)

stage 1 ...

Backward induction: stage 1

Evaluate the HJBs using stage 2-4 for:

- 1. informal care, h = 1, and arbitrary transfer $Q \ge 0$
- 2. privately-paid care (PP), h = m = 0 and Q = 0

 \Rightarrow subtract 2 from 1 to obtain surplus function

Kid's surplus function from IC:

$$S^{k}(Q) = \underbrace{(Q + s_{ic})V_{a^{k}}^{k} + (\bar{C}_{f} + p_{bc} - s_{pp})V_{a^{p}}^{k}}_{\text{maroinal benefit}} - \underbrace{(\Delta y_{ic}V_{a^{k}}^{k} + QV_{a^{p}}^{k})}_{\text{maroinal cost}}.$$

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

- Special case 1: α^k = α^p = 1 (dynastic model) Dynasty chooses informal care iff C
 f + ρ{bc} − s_{pp} ≥ Δy_{ic} − s_{ic}.
- Special case 2: α^k = α^p = 0 (selfish OLG model). Selfish child provides care iff Q + s_{ic} ≥ Δy_{ic}.

Kid's reservation transfer

- The surplus S^k is linearly increasing in Q.
- Solving $S^k(Q) = 0$ yields kid's reservation transfer.

$$\underline{Q}^{k} = \frac{(\Delta y_{ic} - s_{ic})V_{a^{k}}^{k} - (\bar{C}_{f} + p_{bc} - s_{pp})V_{a^{p}}^{k}}{\underbrace{V_{a^{k}}^{k} - V_{a^{p}}^{k}}_{>0}}$$

 \Rightarrow lowest *Q* for which kid is willing to provide care

<u>Q</u>^k is:

- 1. increasing in Δy_{ic} and s_{pp}
- 2. decreasing in p_{bc} and s_{ic} ,
- 3. decreasing in parent's IC preference \bar{C}_f .

Parent's willingness to pay and bargaining result

Parent's surplus function from informal care (IC):

$$S^{p}(Q) = \underbrace{(\bar{C}_{f} + p_{bc} - s_{pp})V^{p}_{a^{p}} + (Q + s_{ic})V^{p}_{a^{k}}}_{\text{marginal benefit}} - \underbrace{(QV^{p}_{a^{p}} + \Delta y_{ic}V^{p}_{a^{k}})}_{\text{marginal cost}}.$$

- The surplus S^p is linearly decreasing in Q.
- Solving $S^{p}(Q) = 0$ yields the parent's willingness to pay for IC:

$$ar{Q}^{
ho} = rac{(ar{C}_{f} +
ho_{bc} - s_{
hop})V^{
ho}_{a^{
ho}} - (\Delta y_{ic} - s_{ic})V^{
ho}_{a^{k}}}{\underbrace{V^{
ho}_{a^{
ho}} - V^{
ho}_{a^{k}}}_{>0}}.$$

- \Rightarrow highest Q for which parent wants IC.
- - 1. increasing in IC preference \bar{C}_f ,
 - 2. increasing in cost of formal care p_{bc} , and subsidy s_{ic} , and
 - 3. decreasing in kid's net-income loss Δy_{ic} and s_{pp} .
- IC takes place iff $\bar{Q}^{p} \geq \underline{Q}^{k}$

Model calibration

Calibration: direct identification

Estimate directly from HRS data:

- δ_s(j^p, ε^p): LTC hazards
- $\delta_d(j^p, \varepsilon^p, s)$: mortality hazards
- δ_m(j^ρ, ε^ρ, s): medical-event hazard rate; given event, out-of-pocket medical expenditures is drawn from F_m(M) (excluding nursing home).
- $n^{p}(j^{p}, \varepsilon^{p}, s = 0)$: number of surviving men to determine HH size
- *s_m(j^p, ε^p*): fraction of disabled married individuals. Of these, get fraction of disabled husbands who receive IC.

 \Rightarrow care arrangements in couples

From government statistics:

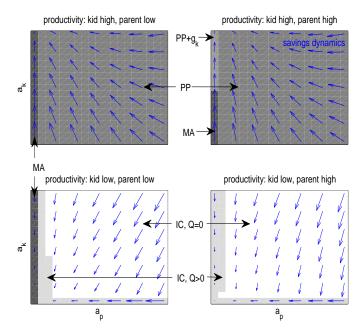
- Medicaid reimbursement rate
- *p_{bc}*: care-related nursing-home cost
- Taxes and social-security system

Standard:

► h_{ε} , *E*: Productivity process (based on U.S. Census, 2000).

Calibration targets and identification

Calibration target	Data	Model
Median wealth (ages 70-75)	\$178,600	\$178,600
Informal care	44.7%	44.7%
Total PP/MA spending	0.821	0.821
Parent (healthy) gift	\$1,548	\$1,548
Kid gift to parent (PP)	\$620	\$620
Exchange transfer	\$9,878	\$9,878
Parameter	Description	Value
ρ	Discount rate	0.1280
ρ \bar{C}_{f}	Formal-care consumption penalty	\$4,050
C _{ma}	Medicaid consumption floor	\$4,650
α^{ρ}	Parent altruism	0.4781
α^k	Kid altruism	$2.7 imes10^{-4}$
ω	Kid bargaining weight	0.050


Notes: coefficient of relative risk aversion is $\gamma = 3.8$ following De Nardi et al. (2010)

- median wealth \Rightarrow rate of time preference ρ
- percentage of IC recipients \Rightarrow consumption penalty from nursing home \bar{C}_f

- ratio total PP/MA spending ⇒ consumption floor C_{ma}
- mean gifts from and to healthy parents \Rightarrow altruism α^k , α^p
- exchange transfer \Rightarrow kid's bargaining weight ω

Results

The model in action: care choices and dynamics

Policy experiments I: Germany

Implement Germany's LTC policy (in year 2000 dollars):

- (1) Informal care (IC) subsidy (sic), annual \$4,375
- (2) Private-payer (PP) subsidy (spp), annual \$11,460

	Care type (%)		Costs (as $\Delta \tau$)			Ex-ante CEV			
LTC policy	IC	MA	PP	$\Delta \tau =$	$\Delta \tau_s$	Δau_{ma}	$\Delta au_{\textit{inc}}$	short run	long run
Status quo	44.7%	33.5%	21.8%						
<i>s_{ic}</i> ↑	59.0	23.6	17.4	0.11	0.25	-0.20	0.06	0.380	-0.033
s_{ic} \uparrow (to young)	59.0	23.6	17.4	-0.01	0.13	-0.20	0.06	0.323	0.012
s_{pp} \uparrow	23.6	32.1	44.3	0.22	0.32	-0.03	-0.07	-0.098	-0.275
$s_{ic} \uparrow + s_{pp} \uparrow$	44.0	22.9	33.1	0.25	0.47	-0.21	-0.01	0.352	-0.193

Notes: IC = informal care; MA = Medicaid; PP = private payer

- s_{ic} ↑ crowds-in IC and crowds-out MA:
 - ► cost of subsidy ⇒ tax hike
 - ► less reliance on Medicaid ⇒ tax cut
 - ► less labor supply ⇒ tax hike
- s_{pp} ↑ crowds-out IC but crowds-out MA only slightly
- s_{ic} ↑ + s_{pp} ↑ leaves IC unchanged, crowds-out MA, crowds-in PP

Policy experiments II: Changes to Medicaid

Changes to Medicaid: 20% change in yma

assumption: consumption-floor changes by the same percentage

	Care type (%)		Costs (as $\Delta \tau$)			Ex-ante CEV			
LTC policy	IC	MA	PP	$\Delta au =$	$\Delta \tau_s$	Δau_{ma}	Δau_{inc}	short run	long run
Status quo	44.7%	33.5%	21.8%						
MA↑	40.3	40.2	19.5	0.20		0.21	-0.01	0.111	-0.361
MA↓	50.1	25.5	24.4	-0.22		-0.20	-0.02	-0.360	0.288
$MA\downarrow + s_{ic}\uparrow$	62.8	18.1	19.2	-0.03	0.26	-0.34	0.05	0.221	0.300

Notes: IC = informal care; MA = Medicaid; PP = private payer

MA[↑] crowds-out IC but does not help to expand tax base from additional labor supply

- MA↓ crowds-in IC, tax rate falls not enough to avoid welfare loss in short run
- MA \downarrow + s_{ic} \uparrow crowds-in IC, PP changes little, and crowds-out MA substantially!

Changes to Medicaid: Current welfare

CEV for currently-alive generations (children and parents)

		M	4↓		$MA\downarrow + s_{ic}\uparrow$			
	child	dren	pare	ents	child	dren	pare	ents
group	average	% + for	average	% + for	average	% + for	average	% + for
all	-0.889	3.5%	-3.907	6.4%	+0.374	82.3%	+0.451	75.3%
below 80	-0.415	7.1%	-3.269	6.5%	+0.367	91.5%	+0.571	77.0%
above 80	-1.175	0.0%	-5.728	6.2%	+0.566	88.7%	+0.109	70.7%
low-prod kid	-1.360	5.1%	-4.779	0.0%	+0.235	66.3%	+0.583	74.0%
high-prod kid	-0.415	1.5%	-2.864	15.3%	+0.484	94.3%	+0.736	78.1%
low-prod parent	-0.784	8.0%	-6.896	0.1%	+0.377	85.0%	-1.669	49.5%
high-prod parent	-0.478	1.0%	-1.240	14.7%	+0.387	92.0%	+2.340	97.6%

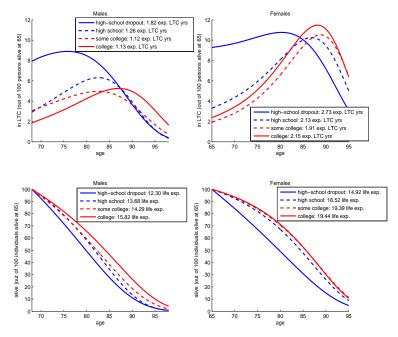
Notes: average is over CEV. "% + for" means fraction out of the group with positive CEV.

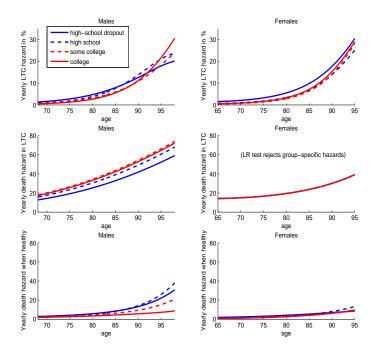
- ▶ MA↓ widespread welfare losses especially for poor and old
- MA \downarrow + s_{ic} \uparrow most welfare losses are undone. Exception: low productivity parents.

Conclusions

- Empirical: Importance of informal caregiving and economic determinants of informal care in the U.S.
- Theoretical:
 - 1. Barczyk & Kredler (2014a,b):
 - Determinacy for intra-family wealth distribution and transfers
 - Both agents can save.
 - 2. This paper:
 - Calibrated quantitative OLG model
 - Both, altruistically-motivated and exchange-motivated transfers
 - Variety of empirically plausible care arrangements
- Policy:
 - 1. MA-spending-cut: increases IC and decreases payroll tax; disliked by current generations but liked by future generations
 - MA-spending-cut with IC subsidy: strong increase in IC and large decrease in MA; cheap policy, liked by majority of current and future generations
 - German-style policy (menu of IC and PP subsidy): very popular among current generations but largest tax hike. Better: only IC subsidy (PP subsidy benefit those who need it least)

Extra slides


Literature


- 1. Macro literature on old-age risks: no family
 - Retirement savings puzzle
 - Medical-expense risk Hubbard et al. (1995), DeNardi et al. (2010)
 - LTC is major uninsured financial risk
 Brown & Finkelstein (2007, 2008, 2011),
 Finkelstein & McGarry (2006)
 - Medicaid aversion (survey evidence) Ameriks et al. (2011)
 - Nursing-home risk drives precautionary savings Kopecky & Koreshkova (2014)
 - Analysis of Medicare and Medicaid policy Attanasio et al. (2011), DeNardi et al. (2013), Braun et al. (2015)
- 2. Applied micro literature: care crowds out labor supply of females \Rightarrow macro implications not studied

▲日▶▲□▶▲□▶▲□▶ □ のQ@

```
Johnson & Sasso (2006), Van Houtven et al. (2013),
Skira (2014)
```

\Rightarrow We aim to bring together 1. and 2.

Table: Females: life expectancy at age 65 by educational attainment.

Source	< high school	high school	some college	college
Data	14.92	18.52	19.39	19.44
Model	15.79	18.94	19.64	19.76

Table: Females: expected duration of LTC, conditional on LTC, by educational attainment.

Source	< high school	high school	some college	college
Data	2.73	2.13	1.91	2.15
Model	2.35	1.98	1.83	2.05

Table: Males: life expectancy at age 65 by educational attainment.

Source	< high school	high school	some college	college
Data	12.30	13.68	14.29	15.82
Model	12.86	13.94	14.60	16.03

Table: Males: expected duration of LTC, conditional on LTC, by educational attainment.

Source	< high school	high school	some college	college
Data	1.82	1.28	1.12	1.13
Model	1.48	1.15	1.01	1.07