Consumption and Health in Old Age

I. Choinière-Crèvecoeur (UQAM), P-C Michaud (UQAM) M. Hurd (RAND) and S. Rohwedder (RAND)

June 4, 2016

Motivation

- ► Key specification choice in many models: How consumption and health enter the utility function.
- Important for:
 - how wealth evolves in old age (De Nardi, French and Jones, 2010)
 - computing value of insurance against health and long-term care risks (Lockwood, 2014)
 - adequacy of retirement preparation (Scholz et al., 2006)
 - ▶ investments in health and other assets (Hugonnier et al., 2013, Fonseca et al., 2014)

Motivation

- We know more about the evolution of total spending with age than about its composition
 - ► There is some descriptive evidence of how the composition of consumption changes with age: Hurd and Rohwedder (2005), Aguiar and Hurst (2013), Banks et al. (2015)
 - Most empirical studies of dynamic demand systems on synthetic panels (e.g. Blundell et al., 1994)
- The response to health shocks may have effects on total spending as well as composition.
- Response may vary depending on type of health shock (ADL vs. IADL)

Earlier Work

Mixed results on state-dependence of marginal utility of consumption with health (from bad to good):

- ► Stated-preference studies: Viscusi and Evans (1990) [+], Sloan et al. (1998) [+], Evans and Viscusi (1991) [0]
- ► Structural models: Lillard et Weiss (1997) [-], De Nardi et al. (2010) [-], Scholtz et Seshadri (2010) [+]
- ▶ Direct estimates from well-being data: Finkelstein et al. (2013) [+]

This paper

For this talk:

- ▶ Investigation of changes in spending and composition as a function of changes in health (ADL and IADL).
- ▶ Using CAMS (2001-2011) and HRS (2000-2010): rich panel data on both spending, health and other ressources (income, wealth).

Theoretical Framework

- ▶ J consumption items which include health spending: $c_t = (c_{1,t}, ..., c_{J,t})$ and h_t (measured from bad to good).
- Within-period preferences:

$$u(c_t, h_t) = \frac{\psi(c_t, h_t)^{1-\sigma}}{1-\sigma}.$$
 (1)

Theoretical Framework

The dynamic budget constraint is given by:

$$w_{t+1} = R(w_t + y_t - m_t)$$

- $m_t = \sum_j c_{j,t}$ is total expenditures.
- ▶ The agent has a discount factor β .
- ▶ Risks $p_m(h_t, t)$ and $p_h(h_{t+1}|h_t, t)$.

Solution

- ► The allocation of expenditures across categories does not affect the marginal utility of wealth next period.
- ▶ The choice of m_t is governed only by the intertemporal allocation problem.
- ▶ Given m_t , the intra-period allocation is to allocate m_t using within period preferences.

Indirect utility function

- ▶ The solution to the within-period problem yields to conditional expenditure shares $\alpha_i^*(h_t, m_t)$.
- ▶ Replacing in $u(c_t, h_t)$ we obtain the indirect utility function :

$$v(m_t, h_t) = \frac{\psi(m_t, h_t)^{1-\sigma}}{1-\sigma}$$

▶ The problem becomes one of choosing m_t

Euler Equation

The solution for the path of m, assuming the borrowing constraint is not binding, is governed by the Euler equation:

$$v'(m_t, h_t) = R\beta(1 - p_m(h_t, t)) \int_h v'(m_{t+1}, h_{t+1}) p_h(h_{t+1} = h|h_t, t) dh$$

Effect of a Health Shock

Hence the solution can be decomposed in two terms:

$$c_j^*(w_t, h_t) = \alpha_j(h_t, m_t^*(w_t, h_t))m_t^*(w_t, h_t)$$

A change in health can have three different effects on spending. Taking the total derivative with respect to h we get:

$$\frac{\partial c_j^*(w_t, h_t)}{\partial h} = \left(\frac{\partial \alpha_j(h_t, m_t^*)}{\partial h} + \frac{\partial \alpha_j(h_t, m^*)}{\partial m} \frac{\partial m^*}{\partial h}\right) m^* + \alpha_j(h_t, m^*) \frac{\partial m^*(w_t, h_t)}{\partial h}$$

Identification of state-dependence effects is complicated by life-cycle and income effects.

Data

- ► The Consumption and Activities Mail Out Survey (CAMS), part of the Health and Retirement Study
 - ▶ Waves 2003-2011

- ► The Health and Retirement Study (HRS)
 - Waves 2002-2010
 - Match information for CAMS respondents

Spending Data

- ► CAMS has 36 spending items. We first group non-durable spending into 8 categories
 - housing, transportation, utilities, household services
 - leisure, donations-gifts, food
 - health (premiums + out-of-pocket)
- Total spending is the sum of non-durable spending and durable spending.
- ▶ Imputations are done by the RAND HRS team. Observations on total spending with more than 20 out of 36 missing values are dropped.

Health

- ► We use reports in HRS of the presence of at least one limitations with:
 - Activities of daily living (bathing, dressing, getting out of bed, walking)
 - Instrumental activities of daily living (shopping, preparing hot meals, using the phone, managing money, and taking medications)
- ► Since recorded at different moment than consumption data, care with assigning health changes to consumption changes (more later)

Wealth

- ► The HRS has extensive information on each respondent's balanced sheet. We use a measure of net household wealth:
 - Assets: checking accounts, CDs, stocks, bonds, housing (primary and other real estate), transportation, individual retirement accounts (IRAs)
 - ▶ Debt: mortgage (primary and other), home loans, other debt (credit card, etc)
- ▶ Net household wealth is the difference of assets and debt.

Other Characteristics

- ► **Expectations:** subjective probability survive +10 years, subjective probability enter nursing home < 5 years, subjective probability of leaving a bequest
- Income: household total income (before taxes and transfers)
- Socio-demographics: age, gender, education, race and ethnicity
- Self-reported health: 5 point scale recoded to 3, poor/fair, good, very good/excellent
- ► **Self-reported diagnosed health conditions:** diabetes, cancer, hypertension, heart disease, stroke


Empirical Strategy

The retrospective window for spending does not coincide with HRS interview

- ► CAMS: september to december of off HRS years (2003, 2005, 2007, 2009, 2011). Look back over last twelve months
- ► **HRS:** primarely march to december of (2002, 2004, 2006, 2008, 2010). Health questions ask about current health.

Design

HRS and CAMS Timing

Sample restrictions

	Observations
CAMS wave 2	2094
CAMS wave 3	3442
CAMS wave 4	3236
CAMS wave 5	3041
CAMS wave 6	3835
CAMS total	15648
Age: 65-94	8117
Single	5687
Not in nursing home	5479
Non-missing $\Delta_4 \log c$	2235
No ADL and IADL baseline	1516

Specification

- Outcome quantities:
 - ▶ aggregates: $\log m_{i,j,t} \log m_{i,j,t-4}$
 - items: $\alpha_{i,j,t} \alpha_{i,j,t-4}$
- ▶ Treatment: $(ADL_{i,t-1}, IADL_{i,t-1})$

Controls

Controls
$$x_i$$
: Conditioning on $(ADL_{i,t-3}, ADL_{i,t-5}) = 0, (IADL_{i,t-3}, IADL_{i,t-5}) = 0$

- ▶ Baseline health: self-diagnosed conditions, self-reported health at t-5
- ▶ Baseline SES: log income, log net wealth and education at t-5
- Baseline expectations: subjective probability of survival and of entering nursing home.
- Socio-demographics: age, gender, race, ethnicity

Estimators

Because of the potential importance of outliers on aggregates, median regressions:

$$Q_{\frac{1}{2}}(\Delta_4(y_{i,t})) = x_i\beta + \gamma_A ADL_{i,t-1} + \gamma_I IADL_{i,t-1} + \lambda_t$$

- x_i contains baseline outcomes (expectations, income, wealth, health) and socio-demographics)
- For shares, we use a tobit with random effect.

Effects on Aggregates

Outcome is change in logs over 4 years (estimates corrected for clusturing at individual level)

	Total Spending	Non-Durable	Net Wealth		
ADL	0.031	0.019	-0.050		
	(0.035)	(0.038)	(0.064)		
IADL	0.127 ***	0.130 ***	-0.033		
	(0.048)	(0.046)	(0.074)		
Observations	1516	1516	1661		
Clur	Clustored standard errors in parentheses				

Effects on Expectations

Outcome is change in levels over 4 years

	Bequest $> 10k$	Nursing Home < 5 yrs	Survive 10 yrs
ADL	1.610	3.328*	0.393
	(2.373)	(1.996)	(2.171)
IADL	-5.673	6.663*	-9.299***
	(4.711)	(3.896)	(3.388)
Observations	1,600	1,346	1,453
R-squared	0.013	0.023	0.026

Effects on Shares

Tobit with random effects Outcome is change in share over 4 years

	Housing	Transport	Utilities	HH Services	Health
ADL	-0.0165	0.0132*	-0.00583	-0.000725	-0.000503
	(0.0125)	(800.0)	(0.00759)	(0.00419)	(0.00938)
IADL	0.0108	-0.0269**	-0.0108	0.00337	0.0496***
	(0.019)	(0.0123)	(0.0116)	(0.00642)	(0.0141)
Observations	1,516	1,516	1,516	1,516	1,516
Individuals	861	861	861	861	861

Effects on Shares

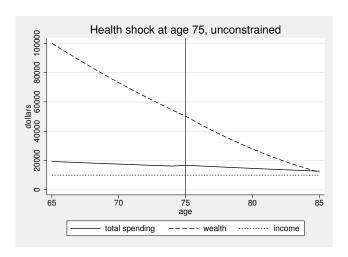
Tobit with random effects. Outcome is change in shares over 4 years.

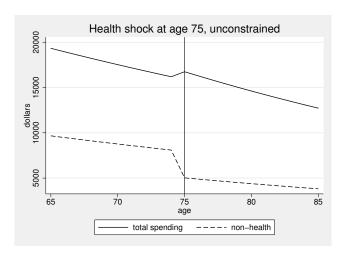
	Gifts	Food	Leisure	Clothing
ADL	0.000703	-0.000347	0.00316	-0.00686**
	(0.00865)	(0.00958)	(0.00501)	(0.00319)
IADL	-0.0205	-0.0247*	-0.00879	-0.00225
	(0.0136)	(0.0145)	(0.00792)	(0.00487)
Observations	1,516	1,516	1,516	1,516
	•		•	
Individuals	861	861	861	861

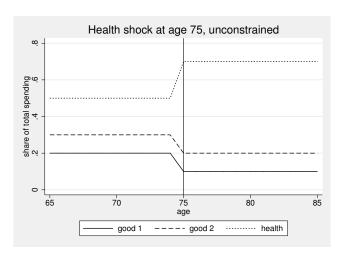
Composition of Net Wealth

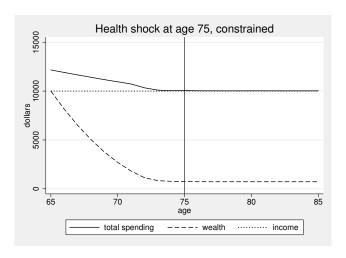
Tobit with random effects. Outcome is change in share of net wealth

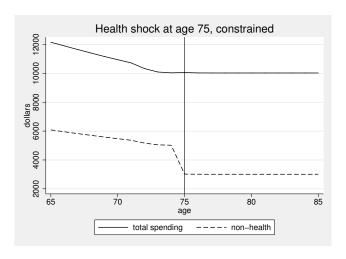
	Financial	Housing	Transport	Real Estates
ADL	-0.0137	-0.0074	0.0155	-0.0237
	(0.0284)	(0.0284)	(0.0182)	(0.0823)
IADL	0.0726*	-0.0542	-0.0613**	0.0882
	(0.0398)	(0.0403)	(0.0268)	(0.104)
Observations	1,636	1,636	1,636	1,636
Individuals	924	924	924	924


Summary of Descriptive Results


- Evidence that non-durable spending increases following onset of IADL
- Consistent with the change in spending, lower survival probability and increased likelihood of entering nursing home
- Increased allocation towards health spending, lower transportation and food spending
- ▶ No evidence of overall effect on net wealth, but evidence of a shift from transportation to financial wealth


Structural Model


- Assume $\psi(c_t, h_t) = \sum_j c_{j,t}^{\alpha_j(h_t)}$, with $\sum_j \alpha_j(h_t) = 1$. J = 3.
- ▶ Health is two states, good $(h_t = 0)$ or bad $(h_t = 1)$
- ▶ Annuity income $y_t = y$
- ▶ Initial wealth w₀
- ▶ Starts in good health $h_0 = 0$.
- ▶ Mortality risk increases with $h_t = 1$, but constant with age.
- Simulation: Agent has good health until age 75, bad health after, simulate 1000 times
- Preferences: $\sigma=2$, $\beta=0.96$, r=0.04, First two goods: $\alpha_j(1)<\alpha_j(0)$, last good (health spending), $\alpha_j(1)>\alpha_j(0)$
- ► Two situations: $(w_0, y) = (1e5, 1e4)$ (unconstrained), $(w_0, y) = (1e4, 1e4)$ (constrained)



Conclusion and Future Work

- Robustness of results
- Other health shocks
- Structural estimation of parameters