Premature deaths, accidental bequests and fairness

Marc FLEURBAEY, Princeton University. Marie-Louise LEROUX, ESG UQAM Pierre PESTIEAU, Université de Liège, CORE and PSE. Gregory PONTHIERE, Université Paris 12, PSE and IUF Stéphane ZUBER, CNRS and PSE.

Canadian Economic Association, June 2018

Motivation (1)

• Taxation of bequest is a very debated subjects as it involves many different interests

 \rightarrow already at the heart of Mill's *Principles of Political Economy* (1848) \rightarrow see also Kaplow (2008).

- Have to distinguish between *purely accidental* and *non accidental* (*i.e. unconditional*) bequests.
- Purely accidental bequests should be taxed at a 100% rate to diminish arbitrary inequalities among descendants
 ...yet some arguments against it : Blumkin and Sadka (2003), Cremer et al. (2012).

Motivation (2)

- We challenge the 100 % tax view by introducing a concern for compensating unlucky short-lived parents.
 - accidental bequests are not only a source of well-being inequalities among children
 - accidental bequests can also, under unequal lifetimes, reduce well-being inequalities among parents (thanks to joy of giving).

Why should we compensate the short-lived?

- Inequalities in the duration of life are mainly due to circumstances.
 - genetic background: 25-33 % of longevity inequalities (Christensen et al 2006)
 - environmental factors: 23-40 % of premature deaths (Pimentel et al 1998)
- Hence the Principle of Compensation applies (Fleurbaey and Maniquet 2004, Fleurbaey 2008)
 - well-being inequalities due to circumstances should be abolished by governments.

This paper

- This paper revisits the taxation of accidental bequests while paying attention to inequalities in longevity.
- Model an OLG economy peopled of long-lived and short-lived individuals. No annuities and bequests made of two components:
 - unconditional bequests (are given independently from duration of life)
 - accidental bequests (would have been consumed in case of a longer life)
- Focus on policies decentralizing the utilitarian optimum and the expost egalitarian optimum (priority to the worst off).

Three main results

- We provide an egalitarian argument against the 100 % tax on accidental bequests. If:
 - A1 Individuals have preferences on how lost saving is distributed in case of death;
 - A2 governments care about the deceased's interests in giving;
 - A3 governments want to equalize lifetime well-being for all (ex post egalitarian SWF);
- It can be optimal to subsidize accidental bequests (less robust).
- We also find a second-best egalitarian argument for taxing bequests at a rate increasing with the age of the deceased.

Literature

• On bequest taxation:

Blumkin and Sadka (2004), Cremer Gahvari and Pestieau (2012), Farhi and Werning (2013), Piketty and Saez (2013)

 \rightarrow Strong emphasis on heterogeneity in productivity

 \rightarrow Here, emphasis on heterogeneity in the duration of life (leading to 2 kinds of bequests).

• On compensation for unequal lifetimes

Fleurbaey and Ponthiere (2013), Fleurbaey Leroux Ponthiere (2014), Fleurbaey Leroux Pestieau Ponthiere (2016), Leroux Ponthiere (2018). \rightarrow Use consumption, labor and retirement profiles to reduce inequalities between short-lived and long-lived.

 \rightarrow Here, special emphasis on the capacity of bequests to provide compensation to the prematurely dead.

Outline

- The OLG economy
- 2 The laissez-faire equilibrium
- The utilitarian optimum
- The ex post egalitarian optimum
- Sequest tax and the age of the deceased
- Oncluding remarks

The Model (1)

Basics

- Two-period OLG economy with risky lifetime. The length of each period is normalized to 1.
- Each cohort is a continuum of agents normalized to 1.
- Period 1 (young adulthood): individuals supply inelastically 1 unit of labor, consume, have one child, plan a bequest and save for their old days.
- Period 2 (old age) is reached with probability $0 < \pi < 1$. Individuals enjoy savings and do not work.

The Model (2)

Transfers

- No annuities.
- Two kinds of transfers from parents to children:
 - Non-accidental bequest: parents plan to give a gift b to their child unconditionally (whatever the duration of life is).
 - Accidental bequest: parents, in case of premature death, transfer to their child the amount d that would have been consumed in case of survival

 \Rightarrow In case of late (resp. early) death, agents transmit b (resp. d+b).

The Model (3)

Heterogeneity

- Two sources of heterogeneity:
 - The individual's duration of life
 - ► The individual's endowment, i.e. the bequest he received, which depends on the duration of life of his parent
- Assume quasi-linear preferences so as to keep the intergenerational dynamics of wealth accumulation Markovian
 → the endowment of an agent born at time t depends only on the longevity of his parent born at t − 1, and not on the longevity of

previous ancestors.

The Model (4)

• Preferences have the following quasi linear form:

$$c_t + \pi \left[u \left(d_{t+1} \right) + v \left(b_{t+1} \right) \right] + (1 - \pi) v \left(d_{t+1} + b_{t+1} \right)$$

where

- c_t is consumption at young age
- b_{t+1} is gifts (the unconditional component of parental bequest)
- ► d_{t+1} is either consumption at old age (in case of survival) or the accidental bequest left to his child (in case of premature death)
- $u(\cdot)$ and $v(\cdot)$ increasing and concave.
- $v(\cdot)$ captures the joy of giving (alive or dead).

The Model (5)

• We assume:

- ▶ u(0) < 0 = v(0) and v(d) > 0 under d > 0.
- there exists $\bar{c} > 0$ such that $u(\bar{c}) = 0$.
- $u'(d) > v'(d) \forall d \ge 0$ (Hurd 1989).
- ▶ there exists $\tilde{d} > 0$ such that $u\left(\tilde{d}\right) = v(\tilde{d})$.
- ▶ $d > \tilde{d}$, i.e. an affluent economy: in the absence of gift, a person prefers surviving and consuming d to dying and letting d to his child.
- A corollary of $d > \tilde{d}$ is u(d) + v(b) > v(d+b): short-lived worst off than long-lived (intuitive).

The Model (6)

Budget constraints

- At the level of budget constraints, we must distinguish between two types of individuals:
 - Type- E_t : young adults at t whose parents die early (proportion 1π);
 - Type- L_t : young adults at t whose parents die late (proportion π).
- The budget constraints for a type *i* are (no annuities):

$$\begin{array}{rcl} c_t^{it} + s_t^{it} + b_{t+1}^{it} & = & w_t + b_t^{it} + B_t^{it} \\ d_{t+1}^{it} & = & R_{t+1} s_t^{it} \end{array}$$

where $B_t^{i_t}$, the accidental bequest, satisfies: $B_t^{E_t} = R_t s_{t-1} > B_t^{L_t} = 0$.

The Model (7)

Production

- Production takes place with labour ℓ_t and capital k_t , according to a CRS production function.
- In intensive terms, we have:

$$y_t = f\left(k_t\right)$$

with $f'(k_t) > 0$ and $f''(k_t) < 0$.

• We assume full depreciation of capital after one period of use, thus:

$$k_{t+1} = \pi s_t^L + (1 - \pi) s_t^E$$

• Factors are paid at their marginal productivity:

$$w_t = f(k_t) - k_t f'(k_t)$$

$$R_t = f'(k_t)$$

The Laissez-faire: temporary equilibrium

• The problem of a type i_t agent is:

$$\begin{split} \max_{c^{i_t}, d^{i_t}_{t+1}, b^{i_t}_{t+1}} & c^{i_t}_t + \pi \left[u(d^{i_t}_{t+1}) + v(b^{i_t}_{t+1}) \right] \\ & + (1 - \pi) v(d^{i_t}_{t+1} + b^{i_t}_{t+1}) \\ \text{s.t.} & w_t + b^{i_t}_t + B^{i_t}_t = c^{i_t}_t + \frac{d^{i_t}_{t+1}}{R_{t+1}} + b^{i_t}_{t+1} \end{split}$$

• Thanks to quasi linearity, we have: $d_{t+1}^{i_t} = d_{t+1}^t \forall i \in \{E, L\}$ and $b_{t+1}^{i_t} = b_{t+1}^t \forall i \in \{E, L\}.$

• However, we have: $c_t^{E_t} > c_t^{L_t}$.

The Laissez-faire: stationary equilibrium

• The rest of the paper assumes the existence, uniqueness and stability of the stationary equilibrium.

- For a given longevity, individuals of type *E* are better off than individuals of type *L*.
- Within a given type i = E, L, the long-lived is better off than the short-lived.
- Concentration of wealth at steady-state *increasing* with π :
 - fewer inheritants receiving accidental bequests.
 - larger accidental bequests (due to more saving).

The utilitarian planning problem

• The planner maximizes average lifetime welfare at steady-state:

$$\max_{\substack{c^i, d^i, b^i, e^i, k}} \begin{bmatrix} (1-\pi)c^E + \pi(1-\pi) \left[u(d^E) + v(b^E) \right] \\ + (1-\pi)^2 v(b^E + e^E) \\ + \pi c^L + \pi^2 \left[u(d^L) + v(b^L) \right] \\ + \pi(1-\pi)v(b^L + e^L) \end{bmatrix} \\ \text{s.t.} \ f(k) = \pi c^L + (1-\pi)c^E + (1-\pi)b^E + \pi(1-\pi)d^E \\ + (1-\pi)^2 e^E + \pi b^L + \pi^2 d^L + \pi(1-\pi)e^L + k \end{aligned}$$

• We do not impose $e^i = d^i$. Accidental bequest may differ from what would have been consumed in case of survival (unlike at laissez-faire).

The utilitarian optimum (with equal c)

- The capital stock satisfies the Golden Rule f'(k) = 1.
- There is no accidental bequest $(e^i = 0)$.
- Individuals of types E and L are equally well-off (same consumptions and gifts).
- For a given type *i*, short-lived individuals are, in general, worse off than long-lived ones.

The utilitarian optimum: decentralization

Proposition

- The decentralization requires a system of intergenerational lump-sum transfers leading to the Golden Rule.
- The decentralization requires also either introducing full collective annuitization or introducing full taxation of accidental bequests.

 \Rightarrow Full taxation of accidental bequests or collective annuitization are equally good at equalizing the initial endowments of all individuals.

But inequalities remain between the long-lived and the short-lived.

The ex post egalitarian planning problem

- The Principle of Compensation requires compensating the unlucky short-lived, and those whose parent died late.
- The ex post egalitarian planning problem is:

$$\max_{\substack{c^{E}, d^{E}, b^{E}, e^{E} \\ c^{L}, d^{L}, b^{L}, e^{L}, k}} \min\{U^{ELL}, U^{ESL}, U^{LLL}, U^{LSL}\}$$

s.t. $f(k) = \pi c^{L} + (1 - \pi)c^{E} + (1 - \pi)b^{E} + \pi (1 - \pi)d^{E}$
 $+ (1 - \pi)^{2}e^{E} + \pi b^{L} + \pi^{2}d^{L} + \pi (1 - \pi)e^{L} + k$

where $U^{iLL} = c^i + u(d^i) + v(b^i) \mbox{ and } U^{iSL} = c^i + v(e^i + b^i)$

• The problem can be rewritten as:

$$\max_{\substack{c,b,d,e,k}} c + u(d) + v(b)$$

s.t. $f(k) = c + b + \pi d + (1 - \pi)e + k$
s.t. $u(d) + v(b) = v(b + e)$

The ex post egalitarian optimum

- The capital stock satisfies the Golden Rule.
- Accidental bequests are augmented with respect to old-age consumption (e>d).
- Individuals of types *E* and *L* are equally well off (same consumptions, gifts and accidental bequests).
- The short-lived and long-lived are equally well off.
- Higher accidental bequests allow to increase the well-being of the prematurely dead through a higher joy of giving.

The ex post egalitarian optimum: decentralization

- The decentralization requires a system of intergenerational lump-sum transfers leading to the Golden Rule.
- It requires also a system of intragenerational lump-sum transfers equalizing endowments across types *E* and *L*.
- It requires also introducing either life insurance or a subsidy on accidental bequests.
- Here annuitization is not desired: this would raise inequalities between the long-lived and the short-lived.
- This decentralization (double equalization) assumes that parents are interested in what they *give* to their children (augmented by the subsidy), but not in what their children *receive* net of all tax/transfers.

The ex post egalitarian optimum: more on decentralization

• If parents are interested in what their children receive *net of all taxes and transfers*.

- The decentralization requires a system of intergenerational lump-sum transfers leading to the Golden Rule.
- In the absence of annuitization and life insurance, the decentralization requires also imposing a tax on accidental bequests (less than 100 %), a tax on second-period consumption and a lump-sum transfer compensating individuals of type L.
- Here accidental bequests lose their usefulness as a way to equalize lifetime well-being between long-lived and short-lived: v(b) = v(b+e).
- Since parents care about what children receive net of all transfers, we have $c + u(d) + v(b) = c + v(b) \iff d = \overline{c}$.

Bequest tax and the age of the deceased

- We now consider a second-best setting where the government cannot impose different tax rates on unconditional and accidental bequests, but can tax bequests based on the age of the deceased.
- The government, acting as a Stackelberg leader, selects three policy instruments:
 - ► a first-period demogrant *T*,
 - a tax rate on bequests left by a short-lived, θ_E ,
 - a tax rate on bequests left by a long-lived, θ_L .
- We consider here a small open economy at its stationary equilibrium (with R = 1).
- We abstract from inequalities in initial endowments among children.

Second-best: 2 planning problems

• Take $d \equiv d(T, \theta_E, \theta_L)$ and $b \equiv b(T, \theta_E, \theta_L)$ from the agent's problem.

Utilitarian

$$\max_{T,\theta_L,\theta_E} \begin{bmatrix} w-d-b+T+\pi \left[u(d)+v((1-\theta_L) b\right)\right] \\ +(1-\pi)v((1-\theta_E) \left(b+d\right)) \end{bmatrix}$$
s.t.
$$\pi\theta_L b+(1-\pi)\theta_E(b+d)=T$$

• Ex post egalitarian

$$\begin{aligned} \max_{T,\theta_L,\theta_E} & w - d - b + T + u(d) + v((1 - \theta_L) b) \\ \text{s.t.} & \pi \theta_L b + (1 - \pi) \theta_E(b + d) = T \\ \text{s.t.} & v((1 - \theta_E) (b + d)) \geq u(d) + v((1 - \theta_L) b) \end{aligned}$$

Second-best: results

- Under the utilitarian criterion, the tax on bequests should be decreasing with the age of the deceased (θ_E > θ_L);
- Under the ex post egalitarian criterion, the tax on bequests should be increasing with the age of the deceased ($\theta_E < \theta_L$).
- Not the first argument for age-differentiated taxation of bequests, but it is not robust to the social welfare criterion.
 - ▶ Vickrey (1945) argued for a bequest tax increasing with the age gap between the donator and the receiver (to avoid fiscal arbitrages).
 → close the idea of taxation increasing with age.

Conclusions

- The optimal tax on (accidental) bequests depends on the ethical treatment of the prematurely dead.
 - Utilitarianism:
 - ★ FB: a 100 % tax on accidental bequests is optimal.
 - * SB: taxing bequests at a rate decreasing with the age of the deceased.
 - Ex post egalitarianism:
 - ★ FB: a 100 % tax on accidental bequests is not optimal \rightarrow even subsidization in some cases!
 - * SB: taxing bequests at a rate increasing with the age of the deceased.