The Demand for Private Long-Term Care Insurance in Canada

Pierre-Carl Michaud

HEC Montreal, CEDIA and RAND

November 2, 2016

Pierre-Carl Michaud (HEC Montreal, CEDIA The Demand for Private Long-Term Care Insi

- Some provinces are aging rapidly with low economic growth to support it
- Demand for LTC will explode in decades to come
- Public provision limited by supply constraints
- Near absence of a private market for LTCI

- Use the framework proposed by Einav et al. (2010, QJE) to simulate equilibrium in a market with selection
- Counterfactual Simulations of a LTCI Market in Quebec
 - Construct LTC risk distribution from microsimulation model
 - Compute WTP for LTCI under various scenarios
 - Investigate cost structure of insurers as a function of market size
 - Derive predictions for equilibrium

- Use COMPAS, a dynamic microsimulation model (Boisclair et al., 2016):
 - $\bullet\,$ representative of population aged 30+ in terms of risks
 - simulates health profile, including disability, 7 diseases (e.g. dementia and stroke) and mortality
 - simulates use of home care (formal) and institutionalization

- We select population age 50 to 60 in 2010
- We obtain 100 draws from their :
 - prospective health
 - income
 - ${\scriptstyle \bullet}$ use of LTC (formal home care and institutionalization) until death

Prevalence of Risk by Age

Figure: COMPAS Projections: Age 50-60 in 2010

Distribution of Longevity by 2010 Income

Figure: COMPAS Projections: Age 50-60 in 2010

Pierre-Carl Michaud (HEC Montreal, CEDIA The Demand for Private Long-Term Care Insi

Distribution of Disability by 2010 Income

Figure: COMPAS Projections: Age 50-60 in 2010

We assume that the agent has an iso-elastic utility function given by:

$$u(c) = \frac{c^{1-\gamma}-1}{1-\gamma} \tag{1}$$

Preferences are DARA: for given risk, an increase in income should decrease demand for LTCI. Ambiguous since risk also depends on income (SES-health gradient).

He discounts annually at a rate β .

Private insurance is heterogeneous. Most common product:

- pay a (fixed) premium p
- payment based on disability status (not based on expense, rather annuity)
- benefit equal to b
- Fraction of year in period before b is paid (waiting period) is d < 1.
- Hence $b_t = (1 d)b$ if first year, $b_t = b$ subsequent years.

A contract is thefore given by (α, p) where $\alpha = (b, d)$.

- Without insurance nursing homes cost h.
- Contribution rate, including insurance payments: $\tau(x_t)$ where $x_t = y_t + b_t$. If $x < x_{\min}$, $\tau_{\min}h < x_t$, otherwise $\tau_{\max}h$.
- Places in public nursing homes are rationed. Denote by η the fraction of months in a year one has to wait. In first year, pays cost s_t = ηh + (1 η)τ(x_t)h and s_t = τ(x_t)h otherwise.

- With private insurance, consumption when autonomous is given by $c_{0,t} = y_t p$.
- If the individual is disabled, consumption is given by

$$c_{1,t} = y_t - n_t s_t - f_t (1 - \nu) e + b_t$$
(2)

If c_{1,t} < c_{min}, c_{1,t} = c_{1,t} + tr where tr = c_{min} - c_{1,t}. Note that this situation is likely to occur during the waiting period for a public nursing home spot.

- For a given income, baseline risk, payoff from contract α and premium p, can use the 100 draws to compute expected utility : V_t(y_t, ψ, α, p)
- The maximum premium one is willing to pay for this contract, $\rho_t(y_t, \psi, \alpha)$ is given by :

$$V_t(y_t, \psi, \alpha, \rho_t(y_t, \psi, \alpha)) = V_t(y_t, \psi, 0)$$
(3)

Willingness to Pay

Figure: Average: Age 50-60 in 2010

November 2, 2016

э

Given the distribution of $\rho_t(y_t, \psi, \alpha)$, we can compute the demand given a premium p as

$$D(p) = \int I(\rho_t(y_t, \psi, \alpha)) > p) dG(y_t, \psi)$$
(4)

The fair insurance premium can be computed by solving for $p = p(\alpha, y_t, \psi)$ in:

$$EPDV[p|\alpha, y_t, \psi] = EPDV[b|y_t, \psi, \alpha]$$
(5)

Current monthly premium is 153\$ per month.

	p10	p25	p50	p75	p90
20000\$	90	119	161	221	363
40000\$	78	111	144	188	252
60000\$	71	101	130	165	218
80000\$	73	96	126	159	200
100000\$	67	95	119	155	200
Total\$	72	101	131	171	227

Table: Fair Monthly Premium by Income Levels

э

The average cost as a function of the premium is given by

$$AC(p) = \frac{1}{D(p)} \int w(y_t, \psi, \alpha) I(\rho_t(y_t, \psi, \alpha)) > p) dG(y_t, \psi)$$
(6)

where $w(y_t, \psi, \alpha)$ is the expected cost to the insurer of covering using the contract α the individual with characteristics (y_t, ψ) . The relationship between market size and AC(p) depends on the degree of adverse (or advantageous) selection.

Expected Cost to Insurer by 2010 Income

Figure: Derived from Expected Cost Distribution: Age 50-60 in 2010

- Competitive Equilibrium with no-entry condition yields:
 AP(p*) = AC(p*) where AP(p) is the average EPDV of premiums paid.
- Efficient allocation requires $MP(p^{**}) = MC(p^{**})$
- Potential for over and under-insurance.

20 / 23

Predicted Equilibrium with Selection

Figure: Age 50-60 in 2010

November 2, 2016

Predicted Optimal Allocation

Figure: Age 50-60 in 2010

Pierre-Carl Michaud (HEC Montreal, CEDIA The Demand for Private Long-Term Care Insi

November 2, 2016

- Relapse and return structure of insurers
- Stated-preference survey to infer preferences (e.g. premium elasticity)
- Prospective market analysis with COMPAS (population level)