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Abstract

Hospital readmission is costly and existing models are often poor or moderate in predicting
readmission. We sought to develop and test a method that can be applied generally by hos-
pitals. Such a tool can help clinicians identify patients who are more likely to be readmitted,
either at early stages of hospital stay or at hospital discharge. Relying on state-of-the art ma-
chine learning algorithms, we predict probability of 30-day readmission at hospital admission
and at hospital discharge using administrative data on 1,633,099 hospital stays from Quebec
between 1995 and 2012. We measure performance of the predictions with the area under
receiver operating characteristic curve (AUC). Deep Learning produced excellent prediction
of readmission province-wide, and Random Forest reached very similar level. The AUC for
these two algorithms reached above 78% at hospital admission and above 87% at hospital
discharge, and the diagnostic codes are among the most predictive variables. The ease of im-
plementation of machine learning algorithms, together with objectively validated reliability,
brings new possibilities for cost reduction in the health care system.
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1 Introduction

Hospital readmissions contribute to a significant proportion of total inpatient spending among the

many cost drivers of healthcare. Within the literature, readmission often refers to hospital ad-

missions within 30 days following the initial discharge and can occur at either the same hospital

or a different hospital (Yu et al. 2015; Stone and Hoffman 2010). It has been documented that

readmission rates are associated with age, patient comorbidities, and many other factors such as di-

agnostics or length of stay in the hospital (see e.g. Wolff 2002, Kind 2007, Pham 2007, Krumholz,

Normand, and Keenan 2008abc, Au et al. 2012, Wang et al. 2014, Yu et al. 2015).

Despite the importance of predicting readmission, most existing works have poor or moderate

predictive results that prevent more general application of the methods (Kansagara et al. 2011). As

an example, the LACE index is sometimes applied to score the risk of readmission in clinical set-

tings (Length of stay, Acuity of the admission, Charlson comorbidity index score and Emergency

department use; Walraven et al. 2010; Gruneir et al. 2011); yet this index is not strong in pre-

dicting 30-day readmission (Cotter et al. 2012). The Area Under receiver operating characteristic

Curve (AUC, Hanley and McNeil 1982) is a standard measure of prediction accuracy. Generally

speaking, an AUC of 0.5 indicates that the model is no better than chance; an AUC of 0.7 to 0.8

indicates modest or acceptable discriminative ability, and a threshold of greater than 0.8 indicates

good discriminative ability (Kansagara et al. 2011, Schneeweiss et al. 2001, Ohman et al. 2000).

The probability of readmission can be estimated at early stages during a hospitalization in order

to identify high-risk patients for intervention. Similarly, the risk can be estimated at hospital dis-

charge. Kansagara et al. (2011) reviewed the literature systematically and found seven studies

whose results could potentially be used to predict hospital readmission at early stages during a

hospitalization (AUC from 0.56 to 0.72). They also found five studies that could be used to predict

readmission at the discharge from hospital (AUC from 0.68 to 0.83). The highest AUC of 0.83

was obtained in Coleman et al. (2004) with a relatively small dataset where the authors combined

administrative information with self-reported health information from survey data; meanwhile, the

AUC decreased to around 0.77 without the information from survey data. The AUC increased a

little bit in more recent works, but the increase is often resulted from more specific approaches.

For instance, Yu et al. (2015) applied institution-specific prediction models on three different hos-

pitals using supporting vector machine and Cox regression algorithms; the AUC reached 0.85 for

hospital one but was lower for hospital two and hospital three (around 0.67). They concluded

following the experiments that a possible way to implement the prediction of readmission is to use

hospital-specific models with hospital specific information.
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The goal of this paper is to explore possibilities to increase predictability of hospital readmis-

sion for practical use. With a big administrative database that is representative at least for Quebec,

we try to derive a general tool that can be implemented easily by hospitals. Machine learning is a

fast-growing research area. Performance of machine learning algorithms can be tested objectively

by cross-validation. In our context, medical codes (e.g., DRG) are often factor variables with many

different categories, making the feature space large and sparse. Classical statistical models such

as the logistic regression are not particularly designed to handle this type of data (see, e.g., Tan

et al. 2010, Conway and White 2012), and state-of-the-art machine learning algorithms provide

another possibility to predict readmission with all this information.

The paper is organized as follows. In part 2 we describe data and variables. In part 3 we

present study design and methodological approach. Part 4 presents the results and discuss the

implications. Finally we conclude in part 5.

2 Data and Variables

2.1 Datasets

Predicting readmissions requires the use of two administrative files. We use the MED-ECHO

and RAMQ databases between 1995 and 2012. We have access to a subsample of all patients

in Quebec. Individuals are included only if they were born on an odd year in April or October,

which accounts for almost one-twelfth of the hospitalized population in Quebec. This constraint

is imposed by the RAMQ, which does not allow the creation of data files with more than 135,000

cases in any given year. The available RAMQ sample includes patients hospitalized at least once

between 1995 and 2012. The RAMQ merged the two data sets based on the health insurance

number of each individual. Each individual is followed during the entire period (1995-2012). For

this study, we delete the hospital stays if the patient died within the hospital, since dead patients

cannot be readmitted. There remain 1,633,099 hospital stays after deleting such entries.

2.1.1 MED-ECHO

The MED-ECHO database includes all the information related to hospital stays and day surgeries

in Quebec. Therefore, the only type of outpatient care included in our data set is day surgeries

performed in hospital. All other types of consultations, procedures and physical examinations that
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are performed outside hospitals are not included in our data set. It also does not include events

related to psychiatric hospitals, rehabilitation hospitals, long-term care facilities and physicians

operating in those settings. For each hospitalisation, the entry and exit dates of the patient (and

therefore the length of stay) are available, as well as an indicator of death within the hospital.

Matched to MED-ECHO is a database containing all diagnostics (using International Classifica-

tion of Diseases, ICD-9 or ICD-10) observed during the hospitalisation. Each hospitalisation is

associated with an APR-DRG, which is a classification using all available information during the

stay to group patients who use a similar amount of resources. This APR-DRG measure includes a

DRG (diagnostic-related group) code, a gravity code indicating the severity of the condition within

the DRG, as well as a mortality code which indicates the probability of death. DRG can also be

grouped in MDC (Major Diagnostic Categories).

2.1.2 RAMQ Services

Data regarding medical services billed to the RAMQ allow us to capture the remuneration of

the vast majority of Quebec physicians. The RAMQ databases include all reimbursement demand

forms filled in by health professionals who receive a fee for each service provided. Physicians paid

through fee-for-service or blended payments must fill out a form for each act, which includes the

service code, amount of reimbursement demanded (according to the Health Ministry guidelines),

moment at which the act was executed, identity of the patient receiving the act and diagnostic

code associated with the act. Therefore, the RAMQ database covers costs related to physicians

paid through fee-for-service as well as the fee-for-service part of costs attributed to physicians who

receive blended payments. The information from this database represents the functional system of

physicians in Quebec. Here we use this database to determine the costs for the patients before and

during the hospitalisation. All costs are converted to 2012 Canadian dollars using the consumer

price index from Statistics Canada.

2.2 Variables

The 30-day readmission is measured as a binary (0-1) variable where 1 indicates that the patient

was readmitted within 30 days after the discharge and 0 otherwise. To illustrate methodological

and practical issues, we predict readmission separately at hospital admission and hospital dis-

charge. Available variables at hospital admission include the region code of the patients and the

region code of the hospitals, the type of healthcare, the specialty of the treating physician at ad-

mission, the department of admission, the year of admission, the total amount in Canadian dollars

billed by physicians during one year before the hospitalization and the total amount during two
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years before the hospitalization, as well as age and gender of each patient. The prediction at hos-

pital discharge further adds the length of each stay, MDC, DRG, major disease/condition of the

patient, gravity level, mortality level, destination after the end of the stay, chronological number of

the stay within the studied period, specialty of the treating physician at the discharge, department

of the discharge, year of the discharge, as well as the total amount in Canadian dollars billed by

physicians during the hospitalization. (See Table 1 for variable description.)

3 Study Design

3.1 Cross-validation of the prediction

We predict readmission with a supervised learning approach. The supervised learning approach

allows us to compare different algorithms objectively with cross-validation. The dataset for a study

is portioned into a training dataset and a testing dataset; the model is trained with the training

dataset and tested by the testing dataset. This allows researchers to compare different algorithms

objectively, since the observations in the testing dataset are not used in the training/construction of

the model, and choose the most predictive model according to the performance (Tan et al. 2006).

To avoid the results being influenced by the partitioning of the original dataset, a multi-fold cross-

validation is necessary. Ten-fold cross-validation is performed in our case to avoid bias associated

with the partitioning of training and testing datasets. To test sensitivity of the predictions, we

compare different versions of the models, in particular Logistic regression and Deep Learning

with different sample size and predictors.

3.2 Algorithms

Throughout the paper we report and compare the results using the area under the ROC curve

(AUC). We compare the performance of five different algorithms: (1) simple logistic regression,

(2) decision trees, (3) naïve Bayes, (4) random forest and (5) deep learning. Logistic regression is

one of the most applied methods in many disciplines when the dependent variable is binary; how-

ever, it is weak when the feature space is large and sparse. In our case the Logistic regression fails

when there are many sparse features such as the diagnostic codes with many different categories;

so we remove main diagnostic code, region code, DRG, destination after the stay, specialty of the

treating physician at admission and discharge, as well as department of admission and discharge

from the Logistic regression. The other algorithms are machine learning algorithms. Generally

speaking (see, e.g., Hastie et al. 2011, James et al. 2013, for more detailed discussion), decision
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tree is fast and easily interpretable, but the prediction power is often moderate. Naïve Bayes is

even faster than decision tree and is one of the fastest algorithms in machine learning. The fea-

tures are assumed to be conditionally independent from each other and this "naïve" assumption

largely increases computation speed. While the gain in computation speed is sometimes at the ex-

pense of less reliable prediction, the algorithm is nonetheless widely applied because running time

is a key determinant in some practical cases. Decision Trees and naïve Bayes are the two algo-

rithms applied by Hosseinzadeh et al. (2013) in the study of readmission in Quebec with machine

learning approach. Random Forest is often the winner in prediction accuracy; it is a tree-based

algorithm and has some similarity with classical decision tree algorithm; nonetheless, each node

of each tree is generated randomly, making a "random forest" of a huge number of trees. Deep

Learning is based on layered architectures of artificial neural networks. The idea is comparable

to the way human brain works; more informative features are extracted and figured out at each

deeper layer. Deep Learning is also strong in prediction, but the computation is often heavy due

to complex structures of the layers. Fortunately, recent development in capacity of analyzing big

data has facilitated implementation of these highly predictive algorithms. Here we apply the Ran-

dom Forest and Deep Learning algorithms provided by H2O, which is now jointly offered with

Spark under the name "Sparkling Water". The algorithms divide data into subsets and then analyze

each subset simultaneously. These processes are combined in the estimation of parameters with a

parallel stochastic gradient method (Recht et al. 2011). Table 2 shows the running time on Intel

Core Duo required for one replication using 90% of the observations as training dataset and 10%

as testing dataset.

4 Results

4.1 Key results

Table 3 shows the AUC obtained from different algorithms. Among the different algorithms,

Deep Learning is the most predictive, and Random Forest is only slightly lower in AUC than the

Deep Learning algorithm. Figure 1 shows the ROC curves of each algorithm at admission and

discharge. The ROC curves for Deep Learning and Random Forest are more on the upper-left

side compared to the ROC curves for the other algorithms, indicating better performance of the

two state-of-the-art algorithms. The other algorithms predicted moderately but the Decision Trees

algorithm failed in the prediction at hospital admission. Figure 2 shows the variation in AUC by

MDC categories and discharge years, using the same color scheme as in Figure 1. The AUC varies

across different MDC categories. The pattern of the variation is similar for different algorithms;
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that is to say, when the AUC is relatively higher or lower for a specific MDC category we see this

clearly for all algorithms. For example, the AUC is relatively lower for the newborns (MDC=15).

This is probably because the vast majority of newborns remains in hospital but are predominantly

healthy. At hospital discharge, the AUC of the two algorithms Deep Learning and Random Forest

is always above the acceptable level 0.7; in fact, the AUC is always above 0.75 except in one case

(MDC=20) and in some cases the AUC goes above 0.9 (MDC=8, 14, 22 and 25). Clearly, the pre-

diction at hospital discharge is feasible for the general population in Quebec. As for the prediction

at hospital admission, the AUC of the two best algorithms is above 0.7 in many MDC categories,

but is below 0.7 in ten out of twenty-six categories (MDC=4, 5, 10, 11, 19, 20, 21, 23, 24, and

25). Nonetheless, in these cases the AUC is not too far from the acceptable level of 0.7 and we

recall that the prediction here only used the variables that are available at the very beginning of

each stay. Hence, a good thing in practice is to add more information (such as the DRG) quickly

once available into the prediction during early stages of a stay. In contrast, the prediction at hos-

pital admission is already highly reliable in two cases (MDC=8 and MDC=14); the former has an

AUC above 0.8 and the latter above 0.9. Although Deep Learning performs the best in general,

the difference in AUC is often minimal with the Random Forest algorithm. In certain cases the

Random Forest algorithm does lead the Deep Learning algorithm; therefore, we recommend the

use of both algorithms in practice for reasons of comparison.

Figure 3 and Figure 4 show the importance of variables at hospital admission and discharge,

respectively, for the algorithms Deep Learning and Random Forest. Variable importance is deter-

mined by calculating the relative influence of each feature (explanatory variable) on the response

variable, with the method of Gedeon (1997). At hospital admission, specialty of the treating

physician, department of admission and the year of admission are very important for both algo-

rithms. Total amount billed by physicians before the hospitalization (during one year and during

two years) and age of patient are very important for the Random Forest algorithm but is relatively

less important for Deep Learning, which gives relatively more importance to region code of the

patients and region code of the hospitals as well as type of healthcare. As for the prediction at

hospital discharge, DRG and diagnostic of major disease/condition are the two most predictive

variables with the Deep Learning algorithm, accounting for nearly 75% of variable importance.

These two variables are also important for the Random Forest algorithm, altogether accounting for

more than 30% of variable importance; but destination after the end of hospital stay is the most

predictive variable with the importance of 32.62%.
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From Figure 4, it is clear that the medical codes DRG and diagshort contribute a lot to the

prediction of readmission, among other predictive categorical variables such as specentree, spec-

sortie, serventree and servsortie. It is not straightforward to include such variables in a simple

Logit regression because this kind of categorical variable corresponds to a large number of bi-

nary/dummy variables that are sparse, i.e. with many zeros and very few ones, and this leads to

a convergence problem in Logit regression (data not shown). In contrast, machine learning algo-

rithms handle such variables with ease and this is particularly true for the Deep Learning algorithm

in our case. As is well-known, the number of observations must be greater than the number of vari-

ables included in an analysis for reason of identification (see, e.g., Wansbeek and Meijer 2000).

The categorical variables largely increased the number of variables in our analysis and for this

reason we varied the sample size to compare the gain from Deep Learning in terms of AUC with

respect to Logistic regression. The results are shown in Table 4 where the comparison was made

at hospital admission and hospital discharge.

Deep Learning always performs better than Logistic regression; additionally, while the AUC

increases slightly with sample size for Logistic regression, the gain from increasing sample size

is relatively more remarkable for Deep Learning. At hospital admission, Deep Learning gains

less than four percentage points in AUC with respect to Logistic regression using 1‰ of the

sample, but the gain increases to more than seven percentage points when using the whole sample.

Similarly, Deep Learning gains less than four percentage points in AUC compared to Logistic

regression at hospital discharge when using 1‰ of the sample; the gain nonetheless rose to almost

nine percentage points with the whole sample. In other words, categorical variables, in particular

medical codes, bring new information to increase the AUC, and Deep Learning also benefits from

big data ("big data" here refers to large sample size). Of course, with a fixed number of variables

included in the analysis, the increase in AUC slows down when the sample size reaches a certain

level (taking 50% of the sample or the whole sample give very similar results), which is well in

line with the discussions in Varian (2014). One step further, Table 5 shows the AUC obtained from

different sets of variables using the Deep Learning algorithm. It is clear that the medical codes

DRG and diagshort increase the AUC significantly and the other variables regionetab, destination,

specentree, serventree, specsortie, servsortie, which are not included in the Logistic regression,

further raise the AUC. However, these latter variables are reported individually to be less predictive

compared with the DRG and diagshort codes.
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4.2 Discussion

From the above results, the most predictive variables are categorical variables with many different

categories, though the continuous variables are also informative. For example, the amount billed

by physicians contributes a lot to a better prediction especially when the medical codes are not

available at early stages of hospital stay. Classical statistical models are not typically conceived

for extracting information from variables with many different categories such as the diagnostic

codes. Machine learning, in contrast, is a fast-developing research area where the algorithms are

particularly designed to handle complicated real data, which offers an interesting option for hos-

pitals. While our dataset is relatively big, machine learning algorithms work also well at smaller

scales.

Comparing with previous results in the literature, Hosseinzadeh et al. (2013) also used data

from the RAMQ to study 30-day readmission in Quebec. They took a machine learning approach

with the Decision Trees and naïve Bayes algorithms. They did not particularly distinguish be-

tween the prediction at hospital admission and at hospital discharge. The AUC was around 0.67

in their paper and was increased to around 0.84 when they removed some "outliers" from the sam-

ple. Because we do not have the same dataset, it is not easy to know the exact reasons for the

difference in AUC associated with the Decision Trees and naïve Bayes algorithms. The variables

included in the analyses may have played a role. They started with a much larger number of

features (more than 20,000) and pre-selected the variables with two feature selection algorithms.

As they admitted, however, there was no consensus on how to distinguish among broad range of

feature reduction methods. The variables in our analyses are selected based on prior knowledge,

which leads nonetheless to more than 2,000 features. This is not necessarily better than applying a

feature selection algorithm, but it seems from the AUC that we did not lose information compared

to their approach. Because they did not give a detailed list of variables included in their study, it

is not easy to know whether some specific features/variables played a key role in our prediction

compared to theirs. Second, the most important reason is perhaps the choice of algorithm. The

two state-of-the-art H2O algorithms (Random Forest and Deep Learning) became available only

very recently, and these algorithms largely increased the AUC requiring only a reasonable amount

of additional running time. To the best of our knowledge, our results are better than any existing

result in the literature on hospital readmission, in a general sense.

It is an important debate as to whether predictions generated by AI will change medical prac-

tice and how. In the first place, more precise predictions can modify the burden of proof: while it
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is more common to make safer decisions in the absence of information, more information and bet-

ter predictions will shift decisions to riskier ones. Safer medical practice generally requires more

tests and examinations given a patient medical condition. Furthermore, as shown by Agrawal et al.

(2016), better information about the costs of risky actions will cause the decision-maker to revert

to the safe action. Hence, a consequence of more precise predictions is that hidden costs related to

risky decisions will have to be better evaluated. This may concern physiological, psychological or

even economic consequences of decisions. For instance, program rationale for the judicious use

of health resources suggests that many medical tests and examinations can be detrimental to the

patient and also costly. However, this type of awareness campaign with the medical profession is

not intended to reverse the burden of proof. Rather, it puts forward that there are hidden opportu-

nities to choose riskier solutions (e.g., reducing blood samples in medical practice); and also that

apparently safe decisions can be detrimental to the patient and thus risky. More effective cam-

paigns that could reduce the need for unnecessary medical procedures should educate physicians

about the use of precise machine predictions.

Better predictions also increase benefit-cost ratio of interventions. This is notably the case with

interventions that reduce the costs associated with hospital readmissions. Indeed, the decision to

intervene may be guided by the cost of the intervention and the benefit related to the likelihood

that the intervention will succeed. In case of success, the patient would not be readmitted to the

hospital for complications, which will save costs of hospitalization. What is more, the benefit of

the intervention increases as the probability of being readmitted is getting high (see, e.g., Bayati

et al. 2014). Thus, the precision with which the probability of readmission is measured has a

direct effect on the benefit-cost ratio as it improves benefits through a possible better targeting of

patients. Indeed, in the presence of cost constraints, a limited number of patients can be treated. In

the absence of reliable prediction, the net benefit of the intervention is reduced because targeting

is inefficient. On the other hand, if the prediction is sufficiently precise, the impact can be maxi-

mized by targeting patients with higher readmission probability. Gaining precision between two

competing models (such as Logit and Deep Learning) could therefore help increasing the benefit

of the intervention. To illustrate this, let’s consider heart failure (HF) clinics in Quebec (Campagna

et al. 2017). In Quebec, 4.43% of patients suffering from HF have active follow-up in HF clinic in

2015-2016. This represents 7760 patients with suspected HF over 175 109 patients suffering from

HF without distinction of etiology or form. The total cost of HF clinics in Quebec is estimated at

$11.8M which is $1515 per patient. The cost of readmission to the hospital averages $10348 per

patient in the absence of a clinic, and $6209 per patient with a clinic, given the 40% decrease in
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length of hospital stay due to the intervention. In addition, the intervention also has the effect of

reducing the readmission rate by 40%. Overall, the benefit-cost ratio of HF clinics in Quebec is

estimated at 1.23 if we consider readmission rate for heart failure in Canada of 23.6%. Neverthe-

less, it is possible to increase this ratio by better targeting patients through readmission prediction.

Ultimately, if we select the most at-risk patients (whose 30-day risk of rehospitalization is close to

1), then the estimated ratio would be of around 5 (i.e. benefits are 5 times higher than costs). More

realistically, if we target patients with an error representing approximately 30% of patients who

would not have been readmitted even without clinical follow-up, the ratio would be of about 3.6,

whereas it would be 4.1 with a model that would predict with 80% efficiency. The difference of

0.5 in the benefit-cost ratio represents approximately $790 per patient, or more than $6.1 million

overall, which does not seem negligible. By increasing to 90% efficiency as the deep learning

algorithm seems to allow, we would reach more than $13.8M gain, a slightly higher amount than

the current cost of HF clinics in Quebec.

5 Conclusion

Hospital readmission can be costly to the health care system in any country. The Canadian, New

Zealand and Australian governments, for example, have used the 30-day readmission rate as a

quality indicator of hospital services (Goldfield 2010). In this paper, different methods have been

used to estimate the probability of patient readmission within 30 days after a hospital stay. In

particular, the traditional logistic regression method was found to give acceptable result, but is

still difficult to implement using all needed characteristics. More innovative machine learning

methods have been found to give better predictions while using more information. In particular,

Deep Learning and Random Forest, the two most complex prediction methods, have found to be

giving superior prediction results, while not being prohibitively hard to estimate. As expected,

using information available at discharge is superior to using only information at admission, but

information at admission still gives a decent prediction. As a final remark, deep learning is indeed

strong in extracting information from variables with many categories such as the diagnostic codes,

which may contain valuable information on patients but are difficult to be handled by classical

statistical models.

Our study must be considered in light of several limitations. First, the current dataset does

not include death outside of hospital stays, and therefore some observations that may not be con-

sidered remain in the dataset. Ideally, if out-of-hospital deaths could be identified, models would
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consider death as a competing risk for readmission. Second, all data are from Quebec and the

results need to be validated externally with other datasets in future studies. Third, we did not

include hospital-specific information, which may further increase the AUC in practice for certain

hospitals. Notwithstanding the limitations, we believe that the results are meaningful for practical

use in hospitals. Our dataset is representative at least for Quebec, and most of the information

we use here (e.g., medical codes) is easily available to hospital, although some coding might be

necessary after data being extracted. The ease of estimations, as well as the relatively high re-

liability of predictions by our models brings new possibilities for decision makers in the health

care system. Indeed, it would be easy to setup a system that will at the end of everyday predict

the readmission probabilities for recent patients and provides a statistical report informing on the

incoming readmission in the system. Such information could then be used to prepare for the in-

coming cohorts. On the individual level, prediction of the probability of readmission of a given

patient allows physicians themselves to plan which patients will be most likely readmitted, and

do a better follow-up on the patients’ condition, as well as making care outside of the stay easier.

Such a system is inexpensive to deploy, but can reduce medical costs effectively with the infor-

mation it provides. What is more, better information for all actors should result in better health

outcomes across the board.

11



6 References

Agrawal A, Gans JS, Goldfarb A. 2016. Exploring the impact of artificial intelligence: Prediction
versus judgment. University of Totonto.

Au A, McAlister FA, Bakal JA, Ezekowitz J, Kaul P, van Walraven C. 2012. Predicting the risk of
unplanned readmission or death within 30 days of discharge after a heart failure hospitalization.
American Heart Journal, 164(3): 365-72.

Bayati M, Braverman M, Gillam M, Mack KM, Ruiz G, Smith MS, Horvitz E. 2014. Data-driven
decisions for reducing readmissions for heart failure: General methodology and case study. PLoS
ONE, 9(10): e109264.

Campagna C, Bourgon Labelle J, Echevin D, Farand P. 2017. Economic evaluation of heart failure
management by specialized clinics in Quebec. University of Sherbrooke.

Coleman EA, Min SJ, Chomiak A, et al. 2004. Posthospital care transitions: patterns, complica-
tions, and risk identification. Health Services Research, 39(5): 1449-1465.

Conway D, White J. 2012. Machine learning for hackers. O’Reilly Media, Inc.

Cotter P, Bhalla V, Wallis S, Biram V. 2012. Predicting readmissions: poor performance of the
lace index in an older UK population. Age and Ageing, 41(6): 784-789.

Gedeon TD. 1997. Data mining of inputs: analysing magnitude and functional measures. Interna-
tional Journal of Neural Systems, 8(02): 209-218.

Goldfield N. 2010. Strategies to decrease the rate of preventable readmission to hospital. Canadian
Medical Association Journal, 182(6): 538-539.

Gruneir A, Dhalla I, Walraven C, Fischerand H, Rochon P. 2011. Unplanned readmissions after
hospital discharge among patients identified as being at high risk for readmission using a validated
predictive algorithm. Open Medicine 5(2): 31.

Hanley JA, McNeil BJ. 1982. The meaning and use of the area under a receiver operating charac-
teristic (ROC) curve. Radiology, 143(1): 29-36.

Hastie TJ, Tibshirani RJ, Friedman JH. 2011. The elements of statistical learning: data mining,
inference, and prediction. Springer.

Hosseinzadeh A, Izadi MT, Verma A, Precup D, Buckeridge DL. 2013. Assessing the predictabil-
ity of hospital readmission using machine learning. Proceedings of the Twenty-Fifth Innovative
Applications of Artificial Intelligence Conference.

James G, Witten D, Hastie T, Tibshirani R. 2013. An introduction to statistical learning (Vol. 6).
New York: Springer.

Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, Kripalani S. 2011.
Risk prediction models for hospital readmission: A systematic review. Journal of the American
Medical Association, 306: 1688-1698.

12



Kind A. 2007. Bouncing back: Patterns and predictors of complicated transitions thirty days
after hospitalizations for acute ischemic stroke. Journal of the American Geriatrics Society, 55(3):
365-373.

Krumholz H, Normand S, Keenan P. 2008a. Hospital 30-day acute myocardial infarction readmis-
sion measure: Methodology. Report prepared for Centers for Medicare and Medicaid Services.

Krumholz H, Normand S, Keenan P. 2008b. Hospital 30-day heart failure readmission measure:
Methodology. Report prepared for Centers for Medicare and Medicaid Services.

Krumholz H, Normand S, Keenan P. 2008c. Hospital 30-day pneumonia readmission risk measure:
Methodology. Report prepared for Centers for Medicare and Medicaid Services.

Ohman EM, Granger CB, Harrington RA, Lee KL. 2000. Risk stratification and therapeutic deci-
sion making in acute coronary syndromes. Journal of the American Medical Association, 284(7):
876-878.

Pham J. 2007. Care patterns in medicare and their implications for pay for performance. New
England Journal of Medicine, 356(11): 1130-1139.

Recht B, Re C, Wright S, Feng N. 2011. Hogwild: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent in J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira & K.Q.
Weinberger, eds. Advances in Neural Information Processing Systems. Curran Associates, Inc.
24: 693-701.

Schneeweiss S, Seeger JD, Maclure M, Wang PS, Avorn J, Glynn RJ. 2001. Performance of co-
morbidity scores to control for confounding in epidemiologic studies using claims data. American
Journal of Epidemiology. 154(9): 854-864.

Stone J, Hoffman G. 2010. Medicare hospital readmissions issues, policy options and ppaca.
Congressional Research Service Report for Congress.

Tan PN, Steinbach M, Kumar V. 2006. Introduction to data mining. Pearson Education India.

Varian HR. 2014. Big Data: New Tricks for Econometrics. Journal of Economic Perspectives,
28(2): 3-28.

Walraven C, Dhalla I, Bell C, Etchells E, Zarnke K, Austin P, Forster A. 2010. Derivation and
validation of an index to predict early death or unplanned readmission after discharge from hospital
to the community. Canadian Medical Association Journal, 6(182): 551-557.

Wang H, Robinson RD, Johnson C, Zenarosa NR, Jayswal RD, Keithley J, Delaney KA. 2014.
Using the LACE index to predict hospital readmissions in congestive heart failure patients. BMC
Cardiovascular Disorders, 14: 97.

Wansbeek T, Meijer E. 2000. Measurement error and latent variables in econometrics, Amster-
dam: North-Holland.

Wolff J. 2002. Prevalence, expenditures, and complications of multiple chronic conditions in the
elderly. Archives of Internal Medicine, 162(20): 2269-76.

13



Yu S, Farooq F, van Esbroeck A, Fung G, Anand V, Krishnapuram B. 2015. Predicting readmission
risk with institution-specific prediction models. Artificial Intelligence in Medicine, 65(2): 89-96.

14



TABLES & FIGURES 

Table 1: Variables used in predictions 

Variable Definition Type N cat. Mean Median SD % missing 

At admission 
  

 
    

serventree 
Department at 
admission 

Categorical 88 
   

0.00% 

specentree 
Specialty of the 
physician at admission 

Categorical 54 
   

0.00% 

region 
Home region of the 
patient 

Categorical 19 
   

0.00% 

regionetab 
Region of the 
healthcare facility  

Categorical 19 
   

0.00% 

typesoins Type of care Categorical 6 
   

0.00% 

anneeent Admission year Categorical 37 
   

0.00% 

female Sex of the patient Categorical 2 
   

0.00% 

montant1an 
Amount in CAD billed 
by physicians during 1 
year before admission 

Continuous  262.24 46.13 766.85 0.00% 

montant2ans 
Amount in CAD billed 
by physicians during 2 
years before admission 

Continuous  419.57 86.02 1099.01 0.00% 

age Age of the patient Continuous  46.50 49.00 26.59 0.00% 

At discharge 
  

 
    

diagshort 
Main diagnostic 
(simplified) 

Categorical 966 
   

0.00% 

destination 
Destination at 
discharge 

Categorical 27 
   

0.00% 

DRG 
Diagnostic-related 
group 

Categorical 618 
   

7.00% 

MDC 
Major diagnostic 
category 

Categorical 25 
   

7.00% 

servsortie 
Department at 
discharge 

Categorical 88 
   

0.00% 

specsortie 
Physician specialty at 
discharge 

Categorical 54 
   

0.00% 

anneesort Discharge year Categorical 19 
   

0.00% 

nsejour Stay number Continuous  3.77 2.00 4.78 0.00% 

dureesejour Length of stay Continuous  6.36 2.00 28.42 0.00% 

montant 
Amount in CAD billed 
by physicians during 
hospitalization 

Continuous  190.20   0.00 565.57 0.00% 

mortalite Mortality risk Continuous  1.27 1.00 0.61 7.01% 

grav Gravity level Continuous  1.51 1.00 0.75 7.00% 

Note: The variables available at admission are, of course, also available at discharge. See 
supporting information for more descriptions of the variables. All costs are converted to 2012 
Canadian dollars using the consumer price index from Statistics Canada. 

  



Table 2: Time required for one replication 

Algorithm Decision Trees Naïve Bayes Random Forest Deep Learning 

Time 2.08 min 1.91 min 4.98 min 9.00 min 
Note:  This is the approximate running time on a computer (Intel Core Duo) required for one 

replication to train (using 90% of the observations) and test the model (using 10% of the 

observations) with all variables available at hospital discharge. In practice, if the model is already 

trained, it only takes a split second to calculate the probability of readmission for a certain patient. 

Table 3: AUC by algorithm and model 

Algorithm Logistic 
regression 

Decision 
Tree 

Naïve Bayes Random 
Forest 

Deep 
Learning 

Admission 0.7121 0.5017 0.7463 0.7814 0.7877 

Discharge 0.7889 0.7264 0.8155 0.8706 0.8776 

Note: More information is available at hospital discharge and so the AUC is always higher with 

respect to the AUC at hospital admission. Decision Tree fails at hospital admission. 

Table 4: Change of AUC with sample size 

 1‰  
sample 

5‰ 
sample 

1% 
sample 

5% 
sample 

10% 
sample 

50% 
sample 

Whole 
Sample 

Admission        

Deep 
Learning 

0.7460 0.7499 0.7681 0.7698 0.7789 0.7865 0.7877 

Logistic 
regression 

0.7078 0.7160 0.7096 0.7102 0.7118 0.7121 0.7121 

Discharge        

Deep 
Learning 

0.8101 0.8140 0.8246 0.8501 0.8667 0.8773 0.8776 

Logistic 
regression 

0.7709 0.7830 0.7852 0.7866 0.7886 0.7886 0.7889 

Note:  Deep Learning adds certain categorical variables not used in Logit regression as explained 

in Section 3.2. Whole sample represents 1,633,099 hospital stays. 

 

Table 5: Change of AUC when adding more variables 

 Variables in 
Logit 

Add DRG 
only 

Add diagshort 
only 

Add DRG and 
diagshort 

Add all 
variables 

Deep 
Learning 

0.8120 0.8390 0.8274 0.8420 0.8776 

Note:  Here we use the whole sample in all cases; the Deep Learning uses the same variables as 

in Table 4. 

 

  



Figure 1: ROC curves 

 

Note: The AUC is the area under ROC curve, which is between 0.5 and 1. The more an ROC 

curve is to the upper-left side of the figure, the bigger is the AUC. The solid lines correspond to 

predictions at discharge and the dashed lines correspond to predictions at admission. Each color 

corresponds to a specific algorithm as indicated in the window. Clearly, Deep Learning and 

Random Forest are the two best algorithms whose ROC curves are closer to the upper-left side.  



Figure 2: AUC by MDC and discharge year

 

Note: The vertical axis shows the AUC. The solid lines correspond to predictions at discharge and the 

dashed lines correspond to predictions at admission. Each color corresponds to a specific algorithm as 

indicated in the window. MDC description: https://en.wikipedia.org/wiki/Major_Diagnostic_Category. 

 

 

 

 

 

  

https://en.wikipedia.org/wiki/Major_Diagnostic_Category


Figure 3: Variable importance for the prediction at hospital admission 

 

Note: Variable importance is the relative influence of each explanatory variable on the response 

variable (readmission). The variables on the horizontal axis are the variables available at hospital 

admission. The variables are sorted by their importance in the Deep Learning algorithm; hence 

specentree is relatively the most important and age is relatively the least important for prediction 

with the Deep Learning algorithm.  

 

  



Figure 4: Variable importance for the prediction at hospital discharge 

 

Note: The figure has the same explanation as Figure 3, except that the variables on the horizontal 

axis are the variables available at hospital discharge (all explanatory variables). The variables are 

sorted by their importance in the Deep Learning algorithm; hence diagshort is relatively the most 

important and montant1an is relatively the least important for prediction with the Deep Learning 

algorithm.  
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