

Département des sciences économiques École des sciences de la gestion Université du Québec à Montréal

Welfare Impacts of Genetic Testing in Health Insurance Markets Will Cross-Subsidies Survive?

David Bardey (Los Andes & TSE) Philippe De Donder (ESG-UQAM)

Personalized Medicine Workshop, Montréal, 14-15 March 2019

1. Introduction

- "Personalized medicine: the use of an individual's genetic profile to guide decisions made in regard to the prevention, diagnosis, and treatment of disease" (Collins, 2010).
- Genetic tests give the probability of developing disease and allow to better tailor
 - primary prevention (decrease probability of getting sick),
 - secondary prevention (decrease severity of illness),
 - treatment (cancers, auto-immune diseases, ...)

Current situation

- Little actionable health information for prevention, except for very specific diseases, or very costly prevention actions: Snyder (2016).
- Low genetic test take-up rates.
- Pooling health insurance contracts (with cross-subsidies between genetic types).

(Near) Future

- Further decreases in genetic tests costs.
- Increase in test informativeness, as measured by efficiency/cost ratio of prevention.
- Should increase the genetic test take-up rates.

Questions addressed by this paper

- Will pooling contracts survive? Or will we move to separating contracts without cross subsidies?
- More generally: what are the welfare impacts of
 - Higher test take-up rates?
 - More informative genetic tests?

Literature

- Doherty and Thistle (1996): incentives to gather information in insurance markets with adverse selection. They stress the importance of what is observable: status (tested or not) and type (good or bad genetic background).
- Subsequent literature has added prevention to this setting:
 - Primary prevention: Hoel and Iverson (2002), Peter et al (2017), Bardey and De Donder (2013),...
 - Secondary prevention: Crainich (2017), Barigozzi and Henriet (2011)

- These papers share two assumptions:
 - All individuals are *ex ante* identical (benefits and costs of testing) \Rightarrow they all either test or do not test at equilibrium.
 - Concentrate on separating contracts à la Rothschild-Stiglitz
- Exceptions:
 - Hoel et al (2006) : heterogeneity in psychological costs. See also
 Hoy, Peter and Richter (2014).
 - Hoy (2006), Hoy et al (2003) and Crainich (2017): consider pooling equilibria
- To the best of our knowledge, no paper with both (i) test take-up rate intermediate and (ii) both pooling and separating contracts considered.

Outline of talk

- 1. Introduction
- 2. Wilson's approach
- 3. Set-Up
- 4. Separating contracts
- 5. Pooling contracts
- 6. Equilibrium contract: separating or pooling?
- 7. Welfare analysis
- 8. Conclusion

2. Wilson's approach: from separating to pooling equilibrium

- Simple setting with two types: L (low probability of damage) et H (high probability), and two states of the world: 1 for the good one (no damage) and 2 for the bad one (damage occurs).
- \bullet Figure 1 (Hoy, 2006) : Separating equilibrium à la Rothschild-Stiglitz
- \bullet Figure 2 (Hoy, 2006) : Pooling equilibrium à la Wilson.

Conclusion:

- If large proportion of bad types: separating equilibrium.
- Otherwise: pooling equilibrium.

249

251

Figure 2. Wilson anticipatory (E2) pooling equilibrium.

3. Set-Up

- Two types of agents:
 - Type L: low probability p_L of illness, proportion 1λ ;
 - Type H: high probability p_H , proportion λ .
- If no information: type U with:

$$p_U = (1 - \lambda)p_L + \lambda p_H.$$

• Exogenous proportion k of agents are informed (by a genetic test) about their type L or H, 1 - k are of type U.

- Disease: same financial damage for all sick individuals.
- Binary prevention effort:
 - Reduces the probability for type H,
 - No impact for type L.
- \Rightarrow Reduces the probability for type U only with probability λ .
- Prevention cost: ϕ .

Regulation and observability of information/actions

- Competitive fringe of insurers
- Prevention is observable (and contractible) by insurers (no moral hazard).
- Consent Law regulation: may reveal one's type, but not obliged

 \Rightarrow adverse selection (as in *Strict Prohibition*)

 \Rightarrow L-type reveals his test, does not do effort and receives a complete coverage at a fair price.

• Insurers either pool types U and H, or they separate them using Rothschild-Stiglitz contracts.

4. Separating equilibrium contract

- \bullet H-type receives a complete coverage at a fair price.
- Two ways to prevent H-types from mimicking U-types:
 - Usual way: under-provide insurance to U-type.
 - Require a different prevention effort for types U and H.
- Equilibrium:
 - Separating contract S^{11} where U and H types do effort, if $\phi < \phi_{\min}$.
 - Separating contract S^{01} where only H undertakes effort, if $\phi_{\min} < \phi < \phi_{\max}.$
 - Separating contract S^{00} where no body undertakes effort, if $\phi > \phi_{\rm max}.$

5. Pooling equilibrium contract

- H and U types have the same effort decision $i \in \{0, 1\}$. Two possible pooling equilibriums: P^0 and P^1 .
- Coverage rate chosen by type U.
- Both k and ϕ affect the pooling equilibrium.
- Equilibrium:
 - Pooling contract P^1 if $\phi < \tilde{\phi}(k)$
 - Pooling contract P^0 if $\phi>\tilde{\phi}(k)$

6. Equilibrium contract: separating or pooling?

- 3 types of separating contracts: S^{00} , S^{01} and S^{11} , according to ϕ .
- 2 types of pooling contracts: P^0 and P^1 , according to ϕ and k.
- In the (k, ϕ) -space, we choose the type of contract (S or P) that yields the highest level of utility to U-type.
- For any value of ϕ , there is a unique value of k, denoted by $\tilde{k}(\phi)$, with pooling equilibrium if $k < \tilde{k}(\phi)$ and separating if $k > \tilde{k}(\phi)$.

Figure 1 : Separation between P^1 , P^0 , S^{11} , S^{01} and S^{00} contracts in the (k, ϕ) space

7. Welfare analysis

Utilitarian welfare:

$$W = (1 - k)V_U + k\lambda V_H + k(1 - \lambda)V_L$$

7.1. Increase in k

- If pooling contract
 - Increase in contract's price \Rightarrow decreases V_U , V_L and W
 - Composition effect: more types L and types H, fewer types U. Increases W
 - Net impact is ambiguous...

- If separating contract
 - Only composition impact \Rightarrow Increases W
- At $k = \tilde{k}(\phi)$ (from Pooling to Separating)
 - $-V_U$ is continuous.
 - $-V_H$ decreases discontinuously as one moves from P to S (price effect>coverage effect)

So, increasing k has ambiguous impact on welfare if pooling and is especially bad for H types when going from P to S.

Also, global maximum for welfare may be reached at k = 0 and P^1 or at k = 1 and S^{11}

7.2. Decrease in ϕ

No composition effect.

- If pooling contract
 - No impact if P^0 .
 - Increases V_U , V_H and W if P^1 .
- If separating contract
 - No impact if S^{00} .
 - Increases V_U , V_H and W if S^{01} or S^{11} (direct impact + higher coverage)

- At $k = \tilde{k}(\phi)$ (from Pooling to Separating)
 - Continuity of V_U
 - $-V_H$ decreases discontinuously as one moves from P^0 to S^{01} (but upward jump from P^0 to P^1 and from S^{01} to P^1)

So, decreasing ϕ is bad for type H (and welfare) when moving from P^0 to S^{01} .

7.3. Simultaneous increase in k and decrease in ϕ

- Numerical example with P^0 then S^{01} then P^1 .
- From P^0 to S^{01} especially bad for type H.
- Global maximum of welfare at high $k/\text{low }\phi$.

Figure 8 : Utility of U (blue) and H (red) as a function of k when $\phi[k] = 0.29 - 0.8 k$

Welfare $(1-k)V_U + k\lambda V_H + k(1-\lambda)V_L$ with $\phi[k]$

8. Conclusion

Two main messages about impact of increase in take-up rates and in informativeness of tests

1. Short run impact of higher take-up rate

- Increase in take-up rate bad for U and H in Pooling contract (and maybe for welfare)
- Moving from Pooling to Separating is especially detrimental to type *H* (and welfare)

 \Rightarrow encouraging individuals to take a test tends to decrease welfare in short run

2. Long run impact of higher take-up rate

Even if move from Pooling to Separating at some point, in the long run a large enough increase in test informativeness (decrease in ϕ) may move us back in pooling with prevention effort.

 \Rightarrow Importance of increasing actionable health information from tests, and not only focus on increasing take-up rate