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Motivation

The 10 most-read articles on Healio Cardiology in 2018

1 Genetic score identi�es young patients at risk for MI
2 Genetic risk score may reshape primary prevention
3 Genomic risk score predicts CAD better than conventional factors
4 Personalized approach to antiplatelet drug selection may improve
clinical outcomes

5 Exercise can decrease genetic risk for CVD
6 Explore the pros and cons of using data on genetic markers.
7 SGLT1 variants tied to lower risk for HF, diabetes, obesity, death
8 Genomic medicine may have great potential in clinical settings
9 Genetic variant may be e¤ective marker for hypertrophic
cardiomyopathy

10 Polygenic risk score predicts early-onset CAD
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Now comes the $$$

Polygenic risk scoring can help clinicians identify populations who are
at risk for diseases such as cancer and heart disease in order to
optimize prevention and treatment regimens according to an
individualized understanding of risk.

Drug development typically focused on speci�c gene�RPE65 and
Inherited Retinal Disease

The sweet spot of a¤ordability, access, and innovation. Health policy
trilemma

In July 2018, Clinical-Trials.gov lists 721 gene therapy trials.

The Myriad myRisk Hereditary Cancer test uses an extensive number
of sophisticated technologies and proprietary algorithms to evaluate
29 clinically signi�cant genes associated with eight hereditary cancer
sites including: breast, colon, ovarian, endometrial, pancreatic,
prostate and gastric cancers and melanoma.

These scores are estimated and now available in many data sets
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Doing Research that Matters feels Good

There is substantial excitement about new data sources.

From an empirical researcher perspective, this can open the blackbox
of unobserved heterogeneity.

Literature still in its infancy and terms are (sadly) used
interchangeably.

Existing lessons from microeconometrics and economics should not be
forgotten.

Lehrer (2015) concludes that researchers should shift their attention
away from investigating speci�c candidate genes to polygenic risk
scores,...

Ding, Lehrer and Lukinova (Queen�s University Queen�s University, NYU-SH and NBER NYU Shanghai )Pros and Cons of Genetics March 2019 4 / 18



Disclaimer

I was hoping to illustrate some of my concerns (am I right versus am I
nuts) with one of these new data sources.

In progress and lack of numbers re�ects even more concerns are
emerging

Lesson: New data is available but documentation is incomplete and
getting answers takes a while.

That said, I think the issues I will highlight will be supported by the
data

Put di¤erently, I am displaying the nearly incredible levels of certitude
but my certitude is on the skepticism front.
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Let�s take the con out of geneconomics applications

The talk will mostly focus on using polygenic scores versus individual
genetic markers (SNPs).

The punchline is that the answer is truly application dependent.

A polygenic score captures one�s risk on the basis of their genetic
make-up. The polygenic risk score is either calculated as

1 The cumulative weighted sum of the variation in multiple genetic
locations, weights obtained from coe¢ cients of a GWAS�all SNPs.

2 The cumulative weighted sum of the variation in multiple genetic
locations, weights obtained from coe¢ cients of a GWAS�only
signi�cant SNPs.

3 Unweighted cumulative sum. A simple allele count.
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Now that we de�ned the score, how it is used (then how is
it created)

The polygenic score is a su¢ cient statistic

For some economists, they dislike summary statistics particularly in
human capital production

Chetty�s bridge and now IO and public economists like su¢ cient
statistics

Why they like them? Transparency for identi�cation in step 1 and
then do your policy simulations later on

As you will hear transparency in polygenic scores is often absent.
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GWAS and gene discovery

A GWAS is a hypothesis-free scan for associations between a speci�c
outcome and subsets of the millions of genetic variants.

EAi =
K

∑
k=1

αkSNP + αpcPopStrat + ui

Assumptions of additive separability and linearity on the genetic
e¤ects. What to include is based on linkage disequilibrium.
Trying to back out heritability, and ui can then be thought of as
environmental factors.
Large samples needed and many datasets are pooled.
The αk are approximate coe¢ cients from a Gibbs sampler that
calculate posterior means of e¤ects, conditional on linkage
disequilibrium information.
The consensus emerging in the behavioral genetics literature is that
individual markers have very small e¤ects (αk ) on phenotypes of
interest to economists.
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identified associations with education, height, and BMI has
increased with large discovery samples.
Consider the example of height. Early studies of height

identified 10–20 SNPs at genome-wide significance,18–20 whereas
more recent research,21 based on a sample of 253,000 individuals,
identifies 697. The first genome-wide association study of
educational attainment was conducted in a discovery sample of
101,069 individuals, and identified one significant association with
years of schooling.9 The authors conducted the follow-up study in
a discovery sample size of 293,723 individuals, and identified 74
loci associated with years of schooling completed. In a combined
analysis of the discovery and replication samples (N = 405,072), the
number of independent loci further increases to 162. Thus,
educational attainment appears to follow a pattern that is
qualitatively similar to medical and anthropometric traits.
Medical geneticists have developed methods to construct PGSs

that can be used to exploit the joint effects of many genetic
variants. Most commonly, such PGSs are constructed using some
version of Eq. 1, albeit replacing the individual βjs (which are
unobserved) with estimates obtained from an independent
sample.28 For most complex traits, the combined explanatory
power of the genome-wide significant associations uncovered so
far is very modest, even if combined into a polygenic score. For
example, the 162 loci, found to be associated with years of
schooling jointly, explains less than 1% of variance across
individuals; the analogous figures for BMI and height are 12.5
and 3%, respectively.
Following the publication of some of the earliest GWASs, the

gap between the explanatory power of the variants identified and
estimates from twin studies prompted a spirited debate on the
causes of the “missing heritability”.29–32

Though the missing heritability seems unlikely to have a single
explanation, researchers now broadly agree a substantial fraction
of the heritability was not “missing,” but was rather hiding in the
form of SNPs whose effects were so small they evaded detection
even in discovery samples of hundreds of thousands of
individuals. This consensus is based on several convergent lines
of evidence, of which the qualitative patterns described in Table 1
is only one.
Most studies to date have found the predictive power of PGSs is

maximized if the markers included to generate the scores are
selected using a more liberal p-value threshold than genome-wide
significance. The fact that prediction accuracy improves when
variants that failed to reach genome-wide significance are added
suggests many of these marginal associations represent true
associations of genetic variants that will reach genome-wide
significance in sufficiently large samples.

Also consistent with the hypothesis of “hidden” heritability, the
predictive power of PGSs has increased as larger and larger
discovery samples have become available. Intuitively, larger
samples enable constructing PGSs with greater predictive power,
because the expected deviation between β̂j and βj falls as larger
and larger samples reduce estimation error. Figure 2 illustrates this
point for three phenotypes using data on genotyped respondents
of European ancestry in the Health and Retirement Study (HRS).
The left panel shows the results for body mass index BMI and years
of schooling. An important interpretational caveat is that our
analyses and projections are for samples of European ancestry.
Because the original GWASs were conducted in samples of
European ancestry, a PGS derived from the GWAS results would
have substantially lower predictive power in non-European
populations.33

For BMI and EduYears, PGSs with weights derived from the first
large-scale GWASs (N ≈ 100,000) explain around 3% of variation in
independent samples. As sample sizes have increased to N ≈
300,000 (BMI) and N ≈ 400,000 (EduYears), the predictive power of
PGSs has increased to about R2 ≈ 7%. For height, the qualitative
patterns are similar, but the level of predictive power is higher at
all sample sizes (unsurprisingly, given that height is a more
heritable trait).
To be clear, for all three traits, a substantial gulf remains

between the predictive power of the PGSs and the estimates of
twin and family studies. The currently attainable degree of
predictive power is roughly 15–20% of the behavior–genetic
estimates implied by the correlations in Fig. 3. One important
source of the gap is that the estimand in behavior–genetic studies
is the proportion of variance explained by all genetic factors,
including those not captured (“tagged”) by standard genotyping
arrays currently used in GWASs. PGSs constructed from common
variants therefore have a lower theoretical upper bound than the
twin and family estimates. This bound, known as the SNP
heritability, can be estimated given suitable SNP data.29,34,35

Published estimates suggest common variants account for about
50% of variation in human height,21 and around 25% of variation
in traits such as BMI and educational attainment.9,27

TAKING STOCK
Our discussion so far has sought to describe and interpret the
results from studies of educational attainment, BMI, and height.

Table 1. Sample size and number of genome-wide significant
associations

Years of education Height Body-mass index

Ref. N #Hits Ref. N #Hits Ref. N #Hits

1 8352 0 4 15,821 12 9 11,536 0
2 101,069 1 5 16,482 20 10 123,865 19
2 126,559 4 6 30,968 27 11 339,224 97
3 293,723 74 7 183,727 180
3 405,072 162 8 253,288 697

Note. Relationship between the size of the discovery sample and the
number of approximately independent loci identified at the genome-wide
significance level (“hits”) for three outcomes. 1. Benjamin et alet al.22 2.
Rietveld et alet al.9 3. Okbay et alet al.23 4. Lettre et alet al.24 5. Weedon
et alet al.19 6. Gubjartsson et alet al.18 7. Lango Allen et alet al.20 8. Wood
et alet al.21 9. Liu et al.25 10. Speliotes et al.26 11. Locke et al.27

Fig. 2 Predictive power of PGSs derived from weights estimated in
discovery samples of various sizes. All dependent variables have
been residualized on sex, age, and 10 principal components of the
variance–covariance matrix of the genotype data. To avoid over-
fitting, all scores are based on meta-analyses that omit the HRS from
the discovery sample.

Genetics and educational attainment
D Cesarini and PM Visscher
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Four New from Me Issues Swept Under the Carpet

GWAS pool data from many studies a la Meta Analysis
1 In the spirit of Steve Slavin "An Exercise in Mega-Silliness"
2 The data is con�dential, 23 and Me provides one observation
only�Ecological Fallacy

3 Actual versus Implied SNP�Should we treat it the same?
4 Why are we testing a moment condition and not a functional
inequality? For all pitched applications, there is a speci�c direction in
mind.

My older concerns are coming in a few slides
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Small e¤ects�>Application dependent

Two types of studies where polygenic scores are used.

Polygenic scores as instrumental variables (returns to education)

Wagei = βxXi + βEDUYearsofEDUi + εi (1)

YearsofEDUi = αkEAScorei + Xiαx + ui

Polygenic scores as control variables

Wagei = βxXi + βScoreEAScorei + εi

Studies ignore the earlier stage of GWAS.

EAi =
K

∑
k=1

αkSNP + αpcPopStrat + ui
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Potentially good application

Instrumental Variables

Wagei = βxXi + βEDUYrsofEDUi + εi

YrsofEDUi = αkScorei + Xiαx + ui

EAi =
K

∑
k=1

αkSNP + αpcPopStrat + ui (2)

versus

Wagei = βxXi + βEDUYrsofEDUi + εi

YrsofEDUi =
G

∑
g=1

αgSNPg + Xiαx + ui

The main trade-o¤ appears to be the many instrument problem
versus interpretation and one should not side-step defending the
exclusion restriction assumption; irrespective of how the polygenic
score is de�ned.
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Potentially bad application

Polygenic scores as control variables

Wagei = βxXi + βScoreEAScorei + εi

EAi =
K

∑
k=1

αkSNP + αpcPopStrat + ui (3)

It does not matter how the polygenic score is calculated, it is a
generated regressor. Estimates of the wage equation are i) not
consistent, ii) ine¢ cient, and iii) valid inference is not possible with
the standard errors.

Measurement error claims appears second-order at best and
disingenuous at worst.

Why not use two-sample instrumental variables approach and can rely
on either GWAS or machine learning strategies for variable selection
to explain what is included?
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Estimating the reduced form seems safer

Consider the reduced form of

Wagei = βxXi + βScoreEAScorei + εi

EAi =
K

∑
k=1

αkSNP + αpcPopStrat + ui (4)

The reduced form is approximately

Wagei = βxXi +
L

∑
l=1

αlSNPi + αpcPopStrat + εi (5)

Clear advantage in it being easier to interpret the e¤ects
Strategies such as Chernozhukov et al. (2017) can be used to obtain
causal e¤ects when there is many covariates�double machine learning
but Ding, Lehrer and Xie (2019) point out this estimator �ops when
there is treatment e¤ect heterogeneity.
What about discretizing polygenic scores? Measurement errors in
discrete indicators cause misclassi�cation bias.
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Measurement error expanded or is this the right measure?

Heritability is generally de�ned as the proportion of variation in a
population that is accounted for by genetic factors, given the
importance in the intergenerational transmission of many traits and
socioeconomic outcomes.
Twin studies are viewed as providing upper bounds on heritability.
GWAS keep explaining more variation.
Let�s recast a GWAS as

EAi =
K

∑
k=1

αkSNP + αpcPopStrat + ui

EAi = Heritability + vi (6)

"Heritability" ignores gene-environment interaction. Tautology and
logic comment on polygenic scores as controls.
Heritability is likely population and time-dependent. Opportunity can
re�ect the degree to which a genetic or environmental advantage is
shaped by choice or circumstance.
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Other comments

The paper discusses applications of gene-environment interactions.

Many attempts to exploit natural experiments and explore
heterogeneity�> gene*environment modi�cations versus
gene*environment responses.

Are there advantages to looking for gene*environment structural
breaks? Environmental strati�cation in the spirit of Rosenquist et al.
(2015).

Advantages to using theory to add some structure. Biroli (2016) as
an example.

Abusing terminology is also prevalent in the genetics as instruments
literature.

Mendelian randomization versus Mendelian encouragement. Dynastic
e¤ects are non-trivial.

The genetic lottery may hold promise as does adoption studies on the
environment side.
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Cons

The majority of evidence so far re�ects only simple associations.

The e¤ect sizes for most genetic factors are very small in magnitude.

The mechanism underlying how genetic factors operate, either directly
or in response to speci�c environmental stimuli, remains poorly
understood.

Use of genetic data causes concerns for infringement on individual
privacy and human rights. The availability of this data may in�uence
decision making and potential discrimination based on one�s genotype.
Q: Does poorly understood phenomena inhibit macroeconomists?
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Pros

Genetic data provides a useful way to understand individual
heterogeneity and often a source of e¤ect heterogeneity.

By understanding the genetic basis of speci�c outcomes, policies and
treatments could be more e¢ ciently targeted.

Sheds new insights on the trade-o¤s made when environments are
regulated via socioeconomic policies.

Proves rich predetermined variation among siblings within the same
family to provide a new empirical strategy to identify causal e¤ects.

My advice for personalized medicine would be to understand the
strengths and weaknesses of bagging.
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Summing up

The dangers of automated sophistication with GWAS and polygenic
scores appear non-trivial.

Understanding and making assumptions explicit is crucial.

Jargon remains a signi�cant barrier to entry.

Ignoring genetic factors appears unsatisfying and would limit any
policy guidance.

Molecular genetic data does o¤er the potential to design new e¤ective
approaches to improve societal
outcomes that currently appear intractable with conventional policy
options.

Attention should not be focused upon is whether a speci�c outcome
or trait is primarily a function of genes. Does the available evidence
suggests a policy passes a cost-bene�t test.

For policy, society needs to develop a healthy relationship with our
genes, one that is neither fanatic nor phobic.
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