Health and Inequality

Jay H. Hong SNU Josep Pijoan-Mas CEMFI José Víctor Ríos-Rull Penn, UCL, NBER

Facing Demographic Change in a Challenging Economic Environment October 27, 2017 Le Saint Sulpice Hôtel, Montréal

Work in Progress

Introduction

• Inequality (economic inequality) is one of the themes of our time.

- Inequality (economic inequality) is one of the themes of our time.
 - Large body of literature documenting inequality in labor earnings, income, and wealth across countries and over time
 Katz, Murphy (QJE 1992); Krueger et al (RED 2010); Piketty (2014); Kuhn, Ríos-Rull (QR 2016); Khun et al (2017)

- Inequality (economic inequality) is one of the themes of our time.
 - Large body of literature documenting inequality in labor earnings, income, and wealth across countries and over time
 Katz, Murphy (QJE 1992); Krueger et al (RED 2010); Piketty (2014); Kuhn, Ríos-Rull (QR 2016); Khun et al (2017)
- We also know of large socio-economic gradients in health outcomes

- Inequality (economic inequality) is one of the themes of our time.
 - Large body of literature documenting inequality in labor earnings, income, and wealth across countries and over time
 Katz, Murphy (QJE 1992); Krueger et al (RED 2010); Piketty (2014); Kuhn, Ríos-Rull (QR 2016); Khun et al (2017)
- We also know of large socio-economic gradients in health outcomes
 - In mortality

Kitagawa, Hauser (1973); Pijoan-Mas, Rios-Rull (Demography 2014); De Nardi *et al* (ARE 2016); Chetty *et al* (JAMA 2016)

- Inequality (economic inequality) is one of the themes of our time.
 - Large body of literature documenting inequality in labor earnings, income, and wealth across countries and over time
 Katz, Murphy (QJE 1992); Krueger et al (RED 2010); Piketty (2014); Kuhn, Ríos-Rull (QR 2016);
 Khun et al (2017)
- We also know of large socio-economic gradients in health outcomes
 - In mortality

Kitagawa, Hauser (1973); Pijoan-Mas, Rios-Rull (Demography 2014); De Nardi *et al* (ARE 2016); Chetty *et al* (JAMA 2016)

• In many other health outcomes

```
Marmot et al (L 1991); Smith (JEP 1999); Bohacek, Bueren, Crespo, Mira, Pijoan-Mas (2017)
```

- Inequality (economic inequality) is one of the themes of our time.
 - Large body of literature documenting inequality in labor earnings, income, and wealth across countries and over time
 Katz, Murphy (QJE 1992); Krueger et al (RED 2010); Piketty (2014); Kuhn, Ríos-Rull (QR 2016);
 Khun et al (2017)
- We also know of large socio-economic gradients in health outcomes
 - In mortality

Kitagawa, Hauser (1973); Pijoan-Mas, Rios-Rull (Demography 2014); De Nardi et al (ARE 2016); Chetty et al (JAMA 2016)

In many other health outcomes

Marmot et al (L 1991); Smith (JEP 1999); Bohacek, Bueren, Crespo, Mira, Pijoan-Mas (2017)

▷ We want to compare and relate inequality in health outcomes to pure economic inequality.

• We build measures of inequality between socio-economic groups

- We build measures of inequality between socio-economic groups
 - We use the notion of Compensated Variation to compare

- We build measures of inequality between socio-economic groups
 - We use the notion of Compensated Variation to compare
- We take into account

- We build measures of inequality between socio-economic groups
 - We use the notion of Compensated Variation to compare
- We take into account
 - Differences in Consumption

- We build measures of inequality between socio-economic groups
 - We use the notion of Compensated Variation to compare
- We take into account
 - Differences in Consumption
 - Differences in Mortality

- We build measures of inequality between socio-economic groups
 - We use the notion of Compensated Variation to compare
- We take into account
 - Differences in Consumption
 - Differences in Mortality
 - Differences in Health

- We build measures of inequality between socio-economic groups
 - We use the notion of Compensated Variation to compare
- We take into account
 - Differences in Consumption
 - Differences in Mortality
 - Differences in Health
 - The actions that will be taken by the disadvantaged groups to improve health and mortality when given more resources

- We build measures of inequality between socio-economic groups
 - We use the notion of Compensated Variation to compare
- We take into account
 - Differences in Consumption
 - Differences in Mortality
 - Differences in Health
 - The actions that will be taken by the disadvantaged groups to improve health and mortality when given more resources
- In doing so, we develop novel ways of measuring

- We build measures of inequality between socio-economic groups
 - We use the notion of Compensated Variation to compare
- We take into account
 - Differences in Consumption
 - Differences in Mortality
 - Differences in Health
 - The actions that will be taken by the disadvantaged groups to improve health and mortality when given more resources
- In doing so, we develop novel ways of measuring
 - a/ Health-related preferences

- We build measures of inequality between socio-economic groups
 - We use the notion of Compensated Variation to compare
- We take into account
 - Differences in Consumption
 - Differences in Mortality
 - Differences in Health
 - The actions that will be taken by the disadvantaged groups to improve health and mortality when given more resources
- In doing so, we develop novel ways of measuring
 - a/ Health-related preferences
 - b/ Health-improving technology with medical expenditures

The project

(2) Estimate the quantitative model with over-identifying restrictions

- (2) Estimate the quantitative model with over-identifying restrictions
- (2) Use our estimates to

- (2) Estimate the quantitative model with over-identifying restrictions
- (2) Use our estimates to
 - 1. Do welfare analysis, i.e. compare the fate of different groups given their allocations.

- (2) Estimate the quantitative model with over-identifying restrictions
- (2) Use our estimates to
 - 1. Do welfare analysis, i.e. compare the fate of different groups given their allocations.
 - 2. Ask what different groups would do if their resources were different and how much does welfare change.

TODAY WE WILL

(2) Write and calibrate a simple model of consumption and health choices

- (1) Discuss briefly how to compare welfare given allocations.
- (2) Write and calibrate a simple model of consumption and health choices
 - Useful to understand identification from a simple set of statistics

- (1) Discuss briefly how to compare welfare given allocations.
- (2) Write and calibrate a simple model of consumption and health choices
 - Useful to understand identification from a simple set of statistics
- (3) Talk about the estimation of a big quantitative model with over-identifying restrictions

- (2) Write and calibrate a simple model of consumption and health choices
 - Useful to understand identification from a simple set of statistics
- (3) Talk about the estimation of a big quantitative model with over-identifying restrictions
 - Adds more realistic features

- (2) Write and calibrate a simple model of consumption and health choices
 - Useful to understand identification from a simple set of statistics
- (3) Talk about the estimation of a big quantitative model with over-identifying restrictions
 - Adds more realistic features

▷ Part (3) still preliminary

Welfare Comparison: Compensated Variation 1. Under the same preferences u(c), then to make them equally happy, we have to set $u(\overline{c}_d) = u(c_c)$, i.e. to give $\frac{\overline{c}_d}{c_d} - 1$ extra consumption to the *d* group.

- 1. Under the same preferences u(c), then to make them equally happy, we have to set $u(\overline{c}_d) = u(c_c)$, i.e. to give $\frac{\overline{c}_d}{c_d} 1$ extra consumption to the *d* group.
- 2. If they have different longevities, then we have to use a *u* function that includes consumption and and the value of expected longevity ℓ : $u(c, \ell)$. Then the compensated variation be the amount $\frac{\overline{c}_d}{c_d} - 1$ that solves

$$u(\overline{c}_d,\ell_d)=u(c_c,\ell_c)$$

Notice that we do not change ℓ_d

- 1. Under the same preferences u(c), then to make them equally happy, we have to set $u(\overline{c}_d) = u(c_c)$, i.e. to give $\frac{\overline{c}_d}{c_d} 1$ extra consumption to the *d* group.
- 2. If they have different longevities, then we have to use a *u* function that includes consumption and and the value of expected longevity ℓ : $u(c, \ell)$. Then the compensated variation be the amount $\frac{\overline{c}_d}{c_d} - 1$ that solves

$$u(\overline{c}_d,\ell_d)=u(c_c,\ell_c)$$

Notice that we do not change ℓ_d

3. If their health differs, u has to take health and longevity into account. The compensated variation does not change health or longevity. $u(\overline{c}_d, \ell_d, h_d) = u(c_c, \ell_c, h_c)$

- 1. Under the same preferences u(c), then to make them equally happy, we have to set $u(\overline{c}_d) = u(c_c)$, i.e. to give $\frac{\overline{c}_d}{c_d} 1$ extra consumption to the *d* group.
- 2. If they have different longevities, then we have to use a *u* function that includes consumption and and the value of expected longevity ℓ : $u(c, \ell)$. Then the compensated variation be the amount $\frac{\overline{c}_d}{c_d} - 1$ that solves

$$u(\overline{c}_d,\ell_d)=u(c_c,\ell_c)$$

Notice that we do not change ℓ_d

- 3. If their health differs, u has to take health and longevity into account. The compensated variation does not change health or longevity. $u(\overline{c}_d, \ell_d, h_d) = u(c_c, \ell_c, h_c)$
- 4. If we estimate preferences and health maintenance technology when compensating people, they would alter their health and longevity in ways we could calculate.

Stylized Model: The construction of *u*

1. Perpetual old: survival and health transitions age-independent

- 1. Perpetual old: survival and health transitions age-independent
- 2. Complete markets: annuities and health-contingent securities (Guarantees stationarity; allows to ignore financial risks associated to health)

- 1. Perpetual old: survival and health transitions age-independent
- 2. Complete markets: annuities and health-contingent securities (Guarantees stationarity; allows to ignore financial risks associated to health)
- 3. Choices: non-medical c vs medical consumption x

- 1. Perpetual old: survival and health transitions age-independent
- 2. Complete markets: annuities and health-contingent securities (Guarantees stationarity; allows to ignore financial risks associated to health)
- 3. Choices: non-medical c vs medical consumption x
- 4. Types e differ in

- 1. Perpetual old: survival and health transitions age-independent
- 2. Complete markets: annuities and health-contingent securities (Guarantees stationarity; allows to ignore financial risks associated to health)
- 3. Choices: non-medical c vs medical consumption x
- 4. Types e differ in
 - resources a^e

- 1. Perpetual old: survival and health transitions age-independent
- 2. Complete markets: annuities and health-contingent securities (Guarantees stationarity; allows to ignore financial risks associated to health)
- 3. Choices: non-medical c vs medical consumption x
- 4. Types e differ in
 - resources a^e
 - initial health distribution μ_h^e

- 1. Perpetual old: survival and health transitions age-independent
- 2. Complete markets: annuities and health-contingent securities (Guarantees stationarity; allows to ignore financial risks associated to health)
- 3. Choices: non-medical c vs medical consumption x
- 4. Types e differ in
 - resources a^e
 - initial health distribution μ^e_h
 - health transitions $\Gamma^{e}_{hh'}(x)$

- 1. Perpetual old: survival and health transitions age-independent
- 2. Complete markets: annuities and health-contingent securities (Guarantees stationarity; allows to ignore financial risks associated to health)
- 3. Choices: non-medical c vs medical consumption x
- 4. Types e differ in
 - resources a^e
 - initial health distribution μ_h^e
 - health transitions $\Gamma^{e}_{hh'}(x)$
 - but not in survival probability γ_h , (Pijoan-Mas, Rios-Rull, Demo 2014)

- 1. Perpetual old: survival and health transitions age-independent
- 2. Complete markets: annuities and health-contingent securities (Guarantees stationarity; allows to ignore financial risks associated to health)
- 3. Choices: non-medical c vs medical consumption x
- 4. Types e differ in
 - resources a^e
 - initial health distribution μ_h^e
 - health transitions $\Gamma^{e}_{hh'}(x)$
 - but not in survival probability γ_h , (Pijoan-Mas, Rios-Rull, Demo 2014)
- 5. Instantaneous utility function depends on consumption and health

$$u(c,h) = \alpha_h + \chi_h \log c$$

- 1. Perpetual old: survival and health transitions age-independent
- 2. Complete markets: annuities and health-contingent securities (Guarantees stationarity; allows to ignore financial risks associated to health)
- 3. Choices: non-medical c vs medical consumption x
- 4. Types e differ in
 - resources a^e
 - initial health distribution μ_h^e
 - health transitions $\Gamma^{e}_{hh'}(x)$
 - but not in survival probability γ_h , (Pijoan-Mas, Rios-Rull, Demo 2014)
- 5. Instantaneous utility function depends on consumption and health

$$u(c,h) = \alpha_h + \chi_h \log c$$

6. Let health $h \in \{h_g, h_b\}$

OPTIMIZATION THE RECURSIVE PROBLEM

$$V^{e}(a,h) = \max_{x,c,a'_{h'}} \left\{ u(c,h) + \beta \gamma_{h} \sum_{h'} \Gamma^{e}_{hh'}(x) V^{e}(a'_{h'},h') \right\}$$

s.t. $x + c + \gamma_{h} \sum_{h'} q^{e}_{hh'} a'_{h'} = a(1+r)$

• In equilibrium
$$(1 + r) = \beta^{-1}$$
 and $q^{e}_{hh'} = \Gamma^{e}_{hh'}$

OPTIMIZATION THE RECURSIVE PROBLEM

$$V^{e}(a,h) = \max_{x,c,a'_{h'}} \left\{ u(c,h) + \beta \gamma_{h} \sum_{h'} \Gamma^{e}_{hh'}(x) V^{e}(a'_{h'},h') \right\}$$

s.t. $x + c + \gamma_{h} \sum_{h'} q^{e}_{hh'} a'_{h'} = a(1+r)$

• In equilibrium
$$(1 + r) = \beta^{-1}$$
 and $q^{e}_{hh'} = \Gamma^{e}_{hh'}$

• Standard Complete Market result (Euler equation for c):

$$\chi_g \frac{1}{c_g} = \chi_b \frac{1}{c_b}$$
 and $c_g = c'_g, \ c_b = c'_b$

OPTIMIZATION THE RECURSIVE PROBLEM

$$V^{e}(a,h) = \max_{x,c,a'_{h'}} \left\{ u(c,h) + \beta \gamma_{h} \sum_{h'} \Gamma^{e}_{hh'}(x) V^{e}(a'_{h'},h') \right\}$$

s.t. $x + c + \gamma_{h} \sum_{h'} q^{e}_{hh'} a'_{h'} = a(1+r)$

• In equilibrium
$$(1 + r) = \beta^{-1}$$
 and $q^{e}_{hh'} = \Gamma^{e}_{hh'}$

• Standard Complete Market result (Euler equation for c):

$$\chi_g \frac{1}{c_g} = \chi_b \frac{1}{c_b}$$
 and $c_g = c'_g, \ c_b = c'_b$

• Optimal health investment (Euler equation for x):

$$u_{c}(c_{h},h) = \beta \gamma_{h} \frac{\partial \Gamma_{hh_{g}}^{e}(x)}{\partial x} \left(V^{e}(a'_{h_{g}},h_{g}) - V^{e}(a'_{h_{b}},h_{b}) \right)$$

WELFARE COMPARISIONS

• The attained value in each health state is given by

$$\begin{pmatrix} V_{g}^{e} \\ V_{b}^{e} \end{pmatrix} = A^{e} \begin{pmatrix} \alpha_{g} + \chi_{g} \log c_{g}^{e} \\ \alpha_{b} + \chi_{b} \log \frac{\chi_{b}}{\chi_{g}} c_{g}^{e} \end{pmatrix}$$

where
$$A^{e} = \begin{bmatrix} I - \beta \begin{pmatrix} \gamma_{g} & 0 \\ 0 & \gamma_{b} \end{pmatrix} \begin{pmatrix} \Gamma_{gg}^{e}(x_{g}^{e}) & 1 - \Gamma_{gg}^{e}(x_{g}^{e}) \\ \Gamma_{bg}^{e}(x_{g}^{e}) & 1 - \Gamma_{bg}^{e}(x_{g}^{e}) \end{pmatrix} \end{bmatrix}^{-1}$$

W

Welfare comparisions

• The attained value in each health state is given by

$$\begin{pmatrix} V_{g}^{e} \\ V_{b}^{e} \end{pmatrix} = A^{e} \begin{pmatrix} \alpha_{g} + \chi_{g} \log c_{g}^{e} \\ \alpha_{b} + \chi_{b} \log \frac{\chi_{b}}{\chi_{g}} c_{g}^{e} \end{pmatrix}$$

where
$$A^{e} = \begin{bmatrix} I - \beta \begin{pmatrix} \gamma_{g} & 0 \\ 0 & \gamma_{b} \end{pmatrix} \begin{pmatrix} \Gamma_{gg}^{e}(x_{g}^{e}) & 1 - \Gamma_{gg}^{e}(x_{g}^{e}) \\ \Gamma_{bg}^{e}(x_{g}^{e}) & 1 - \Gamma_{bg}^{e}(x_{g}^{e}) \end{pmatrix} \end{bmatrix}^{-1}$$

• The unconditional value of the average person of type e is given by

$$V^e = \mu_g^e V_g^e + \left(1 - \mu_g^e\right) V_b^e$$

WELFARE COMPARISIONS

٧

• The attained value in each health state is given by

$$\begin{pmatrix} V_{g}^{e} \\ V_{b}^{e} \end{pmatrix} = A^{e} \begin{pmatrix} \alpha_{g} + \chi_{g} \log c_{g}^{e} \\ \alpha_{b} + \chi_{b} \log \frac{\chi_{b}}{\chi_{g}} c_{g}^{e} \end{pmatrix}$$

where
$$A^{e} = \begin{bmatrix} I - \beta \begin{pmatrix} \gamma_{g} & 0 \\ 0 & \gamma_{b} \end{pmatrix} \begin{pmatrix} \Gamma_{gg}^{e}(x_{g}^{e}) & 1 - \Gamma_{gg}^{e}(x_{g}^{e}) \\ \Gamma_{bg}^{e}(x_{g}^{e}) & 1 - \Gamma_{bg}^{e}(x_{g}^{e}) \end{pmatrix} \end{bmatrix}^{-1}$$

• The unconditional value of the average person of type e is given by

$$V^e = \mu_g^e V_g^e + \left(1 - \mu_g^e\right) V_b^e$$

• Welfare comparision holding x constant

$$V\left(c_{g}^{c}; \ \mu_{h}^{c}, \Gamma_{h}^{c}, \gamma_{h}, \alpha_{h}, \chi_{h}\right) = V\left(\left[1 + \Delta_{c}\right]c_{g}^{d}; \ \mu_{h}^{d}, \Gamma_{h}^{d}, \gamma_{h}, \alpha_{h}, \chi_{h}\right)$$

WELFARE COMPARISIONS

١.

• The attained value in each health state is given by

$$\begin{pmatrix} V_{g}^{e} \\ V_{b}^{e} \end{pmatrix} = A^{e} \begin{pmatrix} \alpha_{g} + \chi_{g} \log c_{g}^{e} \\ \alpha_{b} + \chi_{b} \log \frac{\chi_{b}}{\chi_{g}} c_{g}^{e} \end{pmatrix}$$

where
$$A^{e} = \begin{bmatrix} I - \beta \begin{pmatrix} \gamma_{g} & 0 \\ 0 & \gamma_{b} \end{pmatrix} \begin{pmatrix} \Gamma_{gg}^{e}(x_{g}^{e}) & 1 - \Gamma_{gg}^{e}(x_{g}^{e}) \\ \Gamma_{bg}^{e}(x_{g}^{e}) & 1 - \Gamma_{bg}^{e}(x_{g}^{e}) \end{pmatrix} \end{bmatrix}^{-1}$$

• The unconditional value of the average person of type e is given by

$$V^e = \mu_g^e V_g^e + \left(1 - \mu_g^e\right) V_b^e$$

• Welfare comparision holding x constant

$$V\left(c_{g}^{c}; \ \mu_{h}^{c}, \Gamma_{h}^{c}, \gamma_{h}, \alpha_{h}, \chi_{h}\right) = V\left(\left[1 + \Delta_{c}\right]c_{g}^{d}; \ \mu_{h}^{d}, \Gamma_{h}^{d}, \gamma_{h}, \alpha_{h}, \chi_{h}\right)$$

• Welfare comparision allowing x to be chosen optimally

$$V\left(c_{g}^{c}; \ \mu_{h}^{c}, \Lambda^{c}, \gamma_{h}, \alpha_{h}, \chi_{h}\right) = V\left(c_{g}^{d}\left(\left[1 + \Delta_{a}\right]a, .\right); \ \mu_{h}^{d}, \Lambda^{d}, \gamma_{h}, \alpha_{h}, \chi_{h}\right)$$

8

Data

1. HRS gives

- 1. HRS gives
 - Health distribution at age 50 (by education type)

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)
 - \triangleright Obtain the objects μ_h^e , $\Gamma_{hh'}^e(x^*)$, γ_h

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)
 - \triangleright Obtain the objects μ_h^e , $\Gamma_{hh'}^e(x^*)$, γ_h
- 2. PSID (1999+) gives

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)
 - \triangleright Obtain the objects μ_h^e , $\Gamma_{hh'}^e(x^*)$, γ_h
- 2. PSID (1999+) gives
 - Non-durable consumption (by age, health, and education type)

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)
 - \triangleright Obtain the objects μ_h^e , $\Gamma_{hh'}^e(x^*)$, γ_h
- 2. PSID (1999+) gives
 - Non-durable consumption (by age, health, and education type)
 - Out of Pocket medical expenditures (by age, health, and education type)

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)
 - \triangleright Obtain the objects μ_h^e , $\Gamma_{hh'}^e(x^*)$, γ_h
- 2. PSID (1999+) gives
 - Non-durable consumption (by age, health, and education type)
 - Out of Pocket medical expenditures (by age, health, and education type)
 - \triangleright Obtain health modifier of marginal utility χ_h ($\chi_g = 1$, $\chi_b = 0.85$)

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)
 - \triangleright Obtain the objects μ_h^e , $\Gamma_{hh'}^e(x^*)$, γ_h
- 2. PSID (1999+) gives
 - Non-durable consumption (by age, health, and education type)
 - Out of Pocket medical expenditures (by age, health, and education type)
 - \triangleright Obtain health modifier of marginal utility χ_h ($\chi_g = 1$, $\chi_b = 0.85$)
 - $\,\triangleright\,$ Obtain health technology parameters Λ^e

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)
 - \triangleright Obtain the objects μ_h^e , $\Gamma_{hh'}^e(x^*)$, γ_h
- 2. PSID (1999+) gives
 - Non-durable consumption (by age, health, and education type)
 - Out of Pocket medical expenditures (by age, health, and education type)
 - \triangleright Obtain health modifier of marginal utility χ_h ($\chi_g = 1$, $\chi_b = 0.85$)
 - $\,\triangleright\,$ Obtain health technology parameters Λ^e
- 3. Standard data in clinical analysis

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)
 - \triangleright Obtain the objects μ_h^e , $\Gamma_{hh'}^e(x^*)$, γ_h
- 2. PSID (1999+) gives
 - Non-durable consumption (by age, health, and education type)
 - Out of Pocket medical expenditures (by age, health, and education type)
 - \triangleright Obtain health modifier of marginal utility χ_h ($\chi_g = 1$, $\chi_b = 0.85$)
 - $\,\triangleright\,$ Obtain health technology parameters Λ^e
- 3. Standard data in clinical analysis
 - Outside estimates of the value of a statistical life (VSL)

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)
 - \triangleright Obtain the objects μ_h^e , $\Gamma_{hh'}^e(x^*)$, γ_h
- 2. PSID (1999+) gives
 - Non-durable consumption (by age, health, and education type)
 - Out of Pocket medical expenditures (by age, health, and education type)
 - \triangleright Obtain health modifier of marginal utility χ_h ($\chi_g = 1, \chi_b = 0.85$)
 - \triangleright Obtain health technology parameters Λ^e
- 3. Standard data in clinical analysis
 - Outside estimates of the value of a statistical life (VSL)
 - Health Related Quality of Life (HRQL) scoring data from HRS

- 1. HRS gives
 - Health distribution at age 50 (by education type)
 - Health transitions (by age, health, and education type)
 - Survival functions (by age, health)
 - \triangleright Obtain the objects μ_h^e , $\Gamma_{hh'}^e(x^*)$, γ_h
- 2. PSID (1999+) gives
 - Non-durable consumption (by age, health, and education type)
 - Out of Pocket medical expenditures (by age, health, and education type)
 - \triangleright Obtain health modifier of marginal utility χ_h ($\chi_g = 1$, $\chi_b = 0.85$)
 - $\,\vartriangleright\,$ Obtain health technology parameters Λ^e
- 3. Standard data in clinical analysis
 - Outside estimates of the value of a statistical life (VSL)
 - Health Related Quality of Life (HRQL) scoring data from HRS
 - \triangleright Obtain α_g , α_b

Measuring health objects

• We use all waves in HRS, white males aged 50-88

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)
- Findings

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)
- Findings
 - 1. At age 50, college graduates are in better health than HS dropouts

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)
- Findings
 - 1. At age 50, college graduates are in better health than HS dropouts

$$-\mu_{g}^{c}=0.94$$

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)
- Findings
 - 1. At age 50, college graduates are in better health than HS dropouts

$$- \mu_g^c = 0.94$$

 $- \mu_g^d = 0.59$

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)
- Findings
 - 1. At age 50, college graduates are in better health than HS dropouts

$$- \mu_g^c = 0.94 \\ - \mu_g^d = 0.59$$

2. Large differences in survival by health

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)
- Findings
 - 1. At age 50, college graduates are in better health than HS dropouts

$$\begin{array}{l} - \ \mu_g^c = 0.94 \\ - \ \mu_g^d = 0.59 \end{array}$$

- 2. Large differences in survival by health
 - $e_g=33.1$ (life expectancy if always in good health) $\Rightarrow \gamma_g=0.970$

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)
- Findings
 - 1. At age 50, college graduates are in better health than HS dropouts

$$\begin{array}{l} - \ \mu_g^c = 0.94 \\ - \ \mu_g^d = 0.59 \end{array}$$

- 2. Large differences in survival by health
 - $e_g=33.1$ (life expectancy if always in good health) $\Rightarrow \gamma_g=0.970$
 - $e_b = 19.3$ (life expectancy if always in bad health) $\Rightarrow \gamma_g = 0.948$

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)
- Findings
 - 1. At age 50, college graduates are in better health than HS dropouts

$$\begin{array}{l} - \ \mu_g^c = 0.94 \\ - \ \mu_g^d = 0.59 \end{array}$$

- 2. Large differences in survival by health
 - $e_g=33.1$ (life expectancy if always in good health) $\Rightarrow \gamma_g=0.970$
 - $e_b = 19.3$ (life expectancy if always in bad health) $\Rightarrow \gamma_g = 0.948$
- 3. College health transitions are better

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)
- Findings
 - 1. At age 50, college graduates are in better health than HS dropouts

$$\begin{array}{l} - \ \mu_g^c = 0.94 \\ - \ \mu_g^d = 0.59 \end{array}$$

- 2. Large differences in survival by health
 - $e_g=33.1$ (life expectancy if always in good health) $\Rightarrow \gamma_g=0.970$
 - $e_b = 19.3$ (life expectancy if always in bad health) $\Rightarrow \gamma_g = 0.948$
- 3. College health transitions are better
 - $\Gamma_{gg}^{c} \Gamma_{gg}^{d} = 0.056$ (college are better at remaining in good health)

- We use all waves in HRS, white males aged 50-88
- Health stock measured by self-rated health (2 states)
- Findings
 - 1. At age 50, college graduates are in better health than HS dropouts

$$\begin{array}{l} - \ \mu_g^c = 0.94 \\ - \ \mu_g^d = 0.59 \end{array}$$

- 2. Large differences in survival by health
 - $e_g=33.1$ (life expectancy if always in good health) $\Rightarrow \gamma_g=0.970$
 - $e_b = 19.3$ (life expectancy if always in bad health) $\Rightarrow \gamma_g = 0.948$
- 3. College health transitions are better
 - $\Gamma_{gg}^{c} \Gamma_{gg}^{d} = 0.056$ (college are better at remaining in good health)
 - $\Gamma^c_{bg} \Gamma^d_{bg} = 0.261$ (and even better at recovering good health)

The data

• The *Health Utility Index Mark 3* (HUI3) is a HRQL scoring used in clinical analysis Horsman *et al* (2003), Feeny *et al* (2002), Furlong *et al* (1998)

Της data

- The *Health Utility Index Mark 3* (HUI3) is a HRQL scoring used in clinical analysis Horsman *et al* (2003), Feeny *et al* (2002), Furlong *et al* (1998)
 - Trade-off between years of life under different health conditions

The data

- The *Health Utility Index Mark 3* (HUI3) is a HRQL scoring used in clinical analysis Horsman *et al* (2003), Feeny *et al* (2002), Furlong *et al* (1998)
 - Trade-off between years of life under different health conditions
 - From patient/individual/household surveys: no revealed preference

The data

- The *Health Utility Index Mark 3* (HUI3) is a HRQL scoring used in clinical analysis Horsman *et al* (2003), Feeny *et al* (2002), Furlong *et al* (1998)
 - Trade-off between years of life under different health conditions
 - From patient/individual/household surveys: no revealed preference
- It measures quality of Vision, Hearing, Speech, Ambulation, Dexterity, Emotion, Cognition, Pain up to 6 levels

- The *Health Utility Index Mark 3* (HUI3) is a HRQL scoring used in clinical analysis Horsman *et al* (2003), Feeny *et al* (2002), Furlong *et al* (1998)
 - Trade-off between years of life under different health conditions
 - From patient/individual/household surveys: no revealed preference
- It measures quality of Vision, Hearing, Speech, Ambulation, Dexterity, Emotion, Cognition, Pain up to 6 levels
- It aggregates them into utility values to compare years of life under different health conditions

The data

- The *Health Utility Index Mark 3* (HUI3) is a HRQL scoring used in clinical analysis Horsman *et al* (2003), Feeny *et al* (2002), Furlong *et al* (1998)
 - Trade-off between years of life under different health conditions
 - From patient/individual/household surveys: no revealed preference
- It measures quality of Vision, Hearing, Speech, Ambulation, Dexterity, Emotion, Cognition, Pain up to 6 levels
- It aggregates them into utility values to compare years of life under different health conditions
 - Score of 1 reflects perfect health (all levels at its maximum)

- The *Health Utility Index Mark 3* (HUI3) is a HRQL scoring used in clinical analysis Horsman *et al* (2003), Feeny *et al* (2002), Furlong *et al* (1998)
 - Trade-off between years of life under different health conditions
 - From patient/individual/household surveys: no revealed preference
- It measures quality of Vision, Hearing, Speech, Ambulation, Dexterity, Emotion, Cognition, Pain up to 6 levels
- It aggregates them into utility values to compare years of life under different health conditions
 - Score of 1 reflects perfect health (all levels at its maximum)
 - Score of 0 reflects dead

- The *Health Utility Index Mark 3* (HUI3) is a HRQL scoring used in clinical analysis Horsman *et al* (2003), Feeny *et al* (2002), Furlong *et al* (1998)
 - Trade-off between years of life under different health conditions
 - From patient/individual/household surveys: no revealed preference
- It measures quality of Vision, Hearing, Speech, Ambulation, Dexterity, Emotion, Cognition, Pain up to 6 levels
- It aggregates them into utility values to compare years of life under different health conditions
 - Score of 1 reflects perfect health (all levels at its maximum)
 - Score of 0 reflects dead
 - A score of 0.75 means that a person values 4 years under his current health equal to 3 years in perfect health

- The *Health Utility Index Mark 3* (HUI3) is a HRQL scoring used in clinical analysis Horsman *et al* (2003), Feeny *et al* (2002), Furlong *et al* (1998)
 - Trade-off between years of life under different health conditions
 - From patient/individual/household surveys: no revealed preference
- It measures quality of Vision, Hearing, Speech, Ambulation, Dexterity, Emotion, Cognition, Pain up to 6 levels
- It aggregates them into utility values to compare years of life under different health conditions
 - Score of 1 reflects perfect health (all levels at its maximum)
 - Score of 0 reflects dead
 - A score of 0.75 means that a person values 4 years under his current health equal to 3 years in perfect health
- Use HUI3 data from a subsample of 1,156 respondents in 2000 HRS

• In the data we find that

- In the data we find that
 - Average score for $h = h_g$ is 0.85 and for $h = h_b$ is 0.60

- In the data we find that
 - Average score for $h = h_g$ is 0.85 and for $h = h_b$ is 0.60
- Imagine an hypothetical state of perfect health \bar{h} . Then,

$$\begin{array}{lll} u(c_{g}^{e},h_{g}) & = & 0.85 \, u(\bar{c}^{e},\bar{h}) \\ u(c_{b}^{e},h_{b}) & = & 0.60 \, u(\bar{c}^{e},\bar{h}) \end{array}$$

- In the data we find that
 - Average score for $h = h_g$ is 0.85 and for $h = h_b$ is 0.60
- Imagine an hypothetical state of perfect health \bar{h} . Then,

$$\begin{array}{lll} u(c_{g}^{e},h_{g}) & = & 0.85 \, u(\bar{c}^{e},\bar{h}) \\ u(c_{b}^{e},h_{b}) & = & 0.60 \, u(\bar{c}^{e},\bar{h}) \end{array}$$

• Therefore,

$$\frac{u(c_g^e, h_g)}{u(c_b^e, h_b)} = \frac{\alpha_g + \chi_g \log c_g^e}{\alpha_b + \chi_b \log c_b^e} = \frac{0.85}{0.60}$$

Results without Endogeneous Health

	CG	HSG	HSD CG-HSG	CG-HSD
1				

	CG	HSG	HSD	CG-HSG	CG-HSD
Cons while in Good Health	\$41,348	\$31,817	\$23,621	30%	75%

	CG	HSG	HSD	CG-HSG	CG-HSD
Cons while in Good Health	\$41,348	\$31,817	\$23,621	30%	75%
Life Expectancy	30.8	28.5	25.2	2.3	5.6

	CG	HSG	HSD	CG-HSG	CG-HSD
Cons while in Good Health	\$41,348	\$31,817	\$23,621	30%	75%
Life Expectancy Healthy Life Expectancy	30.8 27.5	28.5 22.2	25.2 14.3	2.3 5.3	5.6 13.2

	CG	HSG	HSD	CG-HSG	CG-HSD
Cons while in Good Health	\$41,348	\$31,817	\$23,621	30%	75%
Life Expectancy	30.8	28.5	25.2	2.3	5.6
Healthy Life Expectancy	27.5	22.2	14.3	5.3	13.2
Unhealthy Life Expectancy	3.3	6.3	10.9	-3.0	-7.6
			,		

	CG	HSG	HSD	CG-HSG	CG-HSD
Cons while in Good Health	\$41,348	\$31,817	\$23,621	30%	75%
Life Expectancy Healthy Life Expectancy Unhealthy Life Expectancy	30.8 27.5 3.3	28.5 22.2 6.3	25.2 14.3 10.9	2.3 5.3 -3.0	5.6 13.2 -7.6
Compensated variation $(1 + \Delta_c)$					

	CG	HSG	HSD	CG-HSG	CG-HSD
Cons while in Good Health	\$41,348	\$31,817	\$23,621	30%	75%
Life Expectancy Healthy Life Expectancy	30.8 27.5	28.5 22.2	25.2 14.3	2.3 5.3	5.6 13.2
Unhealthy Life Expectancy	3.3	6.3	10.9	-3.0	-7.6
Compensated variation $(1 + \Delta_c)$					
health diff: none				1.30	1.75

	CG	HSG	HSD	CG-HSG	CG-HSD
Cons while in Good Health	\$41,348	\$31,817	\$23,621	30%	75%
Life Expectancy Healthy Life Expectancy Unhealthy Life Expectancy	30.8 27.5 3.3	28.5 22.2 6.3	25.2 14.3 10.9	2.3 5.3 -3.0	5.6 13.2 -7.6
Compensated variation $(1+\Delta_c)$					
health diff: none health diff: quantity of life				1.30 2.05	1.75 6.37

	CG	HSG	HSD	CG-HSG	CG-HSD
Cons while in Good Health	\$41,348	\$31,817	\$23,621	30%	75%
Life Expectancy	30.8	28.5	25.2	2.3	5.6
Healthy Life Expectancy	27.5	22.2	14.3	5.3	13.2
Unhealthy Life Expectancy	3.3	6.3	10.9	-3.0	-7.6
Compensated variation $(1+\Delta_c)$					
health diff: none				1.30	1.75
health diff: quantity of life				2.05	6.37
health diff: quality of life				2.05	6.63

	CG	HSG	HSD	CG-HSG	CG-HSD
Cons while in Good Health	\$41,348	\$31,817	\$23,621	30%	75%
Life Expectancy Healthy Life Expectancy Unhealthy Life Expectancy	30.8 27.5 3.3	28.5 22.2 6.3	25.2 14.3 10.9	2.3 5.3 -3.0	5.6 13.2 -7.6
Compensated variation $(1+\Delta_c)$					
health diff: none health diff: quantity of life health diff: quality of life health diff: both				1.30 2.05 2.05 3.21	1.75 6.37 6.63 24.95

COMMENTS

• Welfare differences due to quality and quantity of life are huge

COMMENTS

• Welfare differences due to quality and quantity of life are huge

• Question

If health is so important, why low types do not give up consumption to buy better health?

COMMENTS

- Welfare differences due to quality and quantity of life are huge
- Question

If health is so important, why low types do not give up consumption to buy better health?

• Our answer

By revealed preference, it must be that out-of-pocket health spending is not too useful in improving health after age 50

Results with Endogeneous Health

FUNCTIONAL FORM

$$\begin{split} \Gamma_{gg}^{e}(x) &= \lambda_{0,g}^{e} + \lambda_{1,g} \frac{x^{1-\nu_g}}{1-\nu_g} \\ \Gamma_{bg}^{e}(x) &= \lambda_{0,b}^{e} + \lambda_{1,b} \frac{x^{1-\nu_b}}{1-\nu_b} \end{split}$$

FUNCTIONAL FORM

• Assume the following functional forms:

$$\Gamma_{gg}^{e}(x) = \lambda_{0,g}^{e} + \lambda_{1,g} \frac{x^{1-\nu_{g}}}{1-\nu_{g}}$$

$$\Gamma_{bg}^{e}(x) = \lambda_{0,b}^{e} + \lambda_{1,b} \frac{x^{1-\nu_{b}}}{1-\nu_{b}}$$

• This form is flexible:

FUNCTIONAL FORM

$$\begin{split} \Gamma_{gg}^{e}(x) &= \lambda_{0,g}^{e} + \lambda_{1,g} \frac{x^{1-\nu_{g}}}{1-\nu_{g}} \\ \Gamma_{bg}^{e}(x) &= \lambda_{0,b}^{e} + \lambda_{1,b} \frac{x^{1-\nu_{b}}}{1-\nu_{b}} \end{split}$$

- This form is flexible:
 - it can impute all the advantage as being *intrinsic* to the type $(\lambda_{1,h} = 0)$ (It could also be the result of different non-monetary investments, which we will ignore.)

FUNCTIONAL FORM

$$\begin{split} \Gamma_{gg}^{e}(x) &= \lambda_{0,g}^{e} + \lambda_{1,g} \ \frac{x^{1-\nu_g}}{1-\nu_g} \\ \Gamma_{bg}^{e}(x) &= \lambda_{0,b}^{e} + \lambda_{1,b} \ \frac{x^{1-\nu_b}}{1-\nu_b} \end{split}$$

- This form is flexible:
 - it can impute all the advantage as being *intrinsic* to the type $(\lambda_{1,h} = 0)$ (It could also be the result of different non-monetary investments, which we will ignore.)
 - or as being the result of having *more resources* ($\lambda_{0,h}^e = 0$)

FUNCTIONAL FORM

$$\begin{split} \Gamma_{gg}^{e}(x) &= \lambda_{0,g}^{e} + \lambda_{1,g} \frac{x^{1-\nu_g}}{1-\nu_g} \\ \Gamma_{bg}^{e}(x) &= \lambda_{0,b}^{e} + \lambda_{1,b} \frac{x^{1-\nu_b}}{1-\nu_b} \end{split}$$

- This form is flexible:
 - it can impute all the advantage as being *intrinsic* to the type $(\lambda_{1,h} = 0)$ (It could also be the result of different non-monetary investments, which we will ignore.)
 - or as being the result of having *more resources* ($\lambda_{0,h}^e = 0$)
 - or somenthing in between.

FUNCTIONAL FORM

$$\begin{split} \Gamma_{gg}^{e}(x) &= \lambda_{0,g}^{e} + \lambda_{1,g} \frac{x^{1-\nu_g}}{1-\nu_g} \\ \Gamma_{bg}^{e}(x) &= \lambda_{0,b}^{e} + \lambda_{1,b} \frac{x^{1-\nu_b}}{1-\nu_b} \end{split}$$

- This form is flexible:
 - it can impute all the advantage as being *intrinsic* to the type $(\lambda_{1,h} = 0)$ (It could also be the result of different non-monetary investments, which we will ignore.)
 - or as being the result of having *more resources* ($\lambda_{0,h}^e = 0$)
 - or somenthing in between.
- This adds 8 parameters: ν_g , $\nu_b = \lambda_{1,g}$, $\lambda_{1,b} = \lambda_{0,g}^c$, $\lambda_{0,b}^c$, $\lambda_{0,g}^d$, $\lambda_{0,g}^d$, $\lambda_{0,b}^d$

IDENTIFICATION WITH ONLY TWO TYPES

We have 8 parameters, we need 8 equations

IDENTIFICATION WITH ONLY TWO TYPES

We have 8 parameters, we need 8 equations

1. The 4 FOC of x (one for each e and h)

$$\underbrace{\chi_{h} \frac{1}{c_{h}^{e}}}_{\frac{\partial u(c,h)}{\partial c}} = \beta \gamma_{h} \underbrace{\lambda_{1,h} \frac{1}{(x_{h}^{e})^{\nu_{h}}}}_{\frac{\partial \Gamma_{hg}^{e}(\times)}{\partial x}} \left(V_{g}^{e} - V_{b}^{e}\right)$$

IDENTIFICATION WITH ONLY TWO TYPES

We have 8 parameters, we need 8 equations

1. The 4 FOC of x (one for each e and h)

$$\underbrace{\chi_{h} \frac{1}{c_{h}^{e}}}_{\frac{\partial u(c,h)}{\partial c}} = \beta \gamma_{h} \underbrace{\lambda_{1,h} \frac{1}{(x_{h}^{e})^{\nu_{h}}}}_{\frac{\partial \Gamma_{hg}^{e}(x)}{\partial \omega}} \left(V_{g}^{e} - V_{b}^{e}\right)$$

a/ The health spending ratio between education types identifies u_h

$$\left(rac{x_h^c}{x_h^d}
ight)^{
u_h} = rac{c_h^c}{c_h^d}rac{\left(V_g^c-V_b^c
ight)}{\left(V_g^d-V_b^d
ight)} \qquad orall h \in \{g,b\}$$

IDENTIFICATION WITH ONLY TWO TYPES

We have 8 parameters, we need 8 equations

1. The 4 FOC of x (one for each e and h)

$$\underbrace{\chi_{h} \frac{1}{c_{h}^{e}}}_{\frac{\partial u(c,h)}{\partial c}} = \beta \gamma_{h} \underbrace{\lambda_{1,h} \frac{1}{(x_{h}^{e})^{\nu_{h}}}}_{\frac{\partial \Gamma_{hg}^{e}(x)}{\partial \omega}} \left(V_{g}^{e} - V_{b}^{e}\right)$$

a/ The health spending ratio between education types identifies u_h

$$\left(rac{\lambda_h^c}{\lambda_h^d}
ight)^{
u_h} = rac{c_h^c}{c_h^d}rac{\left(V_g^c - V_b^c
ight)}{\left(V_g^d - V_b^d
ight)} \qquad orall h \in \{g, b\}$$

b/ The health spending level identifies $\lambda_{1,h}$

DENTIFICATION WITH ONLY TWO TYPES

We have 8 parameters, we need 8 equations

1. The 4 FOC of x (one for each e and h)

$$\underbrace{\chi_{h} \frac{1}{c_{h}^{e}}}_{\frac{\partial u(c,h)}{\partial c}} = \beta \gamma_{h} \underbrace{\lambda_{1,h} \frac{1}{(x_{h}^{e})^{\nu_{h}}}}_{\frac{\partial \Gamma_{hg}^{e}(x)}{\partial \omega}} \left(V_{g}^{e} - V_{b}^{e}\right)$$

a/ The health spending ratio between education types identifies u_h

$$ig(rac{x_h^c}{x_h^d}ig)^{
u_h}=rac{c_h^c}{c_h^d}rac{\left(V_g^c-V_b^c
ight)}{\left(V_g^d-V_b^d
ight)}\qquad orall h\in\{g,b\}$$

b/ The health spending level identifies $\lambda_{1,h}$

2. The 4 observed health transitions yield the $\lambda_{0,h}^e$ for e and $h \in \{g, b\}$.

SUMMARY

• OOP money matters little (after age 50): 0.3 out of 5.6 years

- OOP money matters little (after age 50): 0.3 out of 5.6 years
 - RAND Health Insurance experiment of 1974-1982 Aron-Dine *et al* (JEP 2013)

- OOP money matters little (after age 50): 0.3 out of 5.6 years
 - RAND Health Insurance experiment of 1974-1982 Aron-Dine *et al* (JEP 2013)
 - Oregon Medicaid Extension lottery of 2008 Finkelstein *et al* (QJE 2012)

- OOP money matters little (after age 50): 0.3 out of 5.6 years
 - RAND Health Insurance experiment of 1974-1982 Aron-Dine *et al* (JEP 2013)
 - Oregon Medicaid Extension lottery of 2008 Finkelstein *et al* (QJE 2012)
- We recover small curvature: $\nu_g = 0.35$ and $\nu_b = 0.25$

- OOP money matters little (after age 50): 0.3 out of 5.6 years
 - RAND Health Insurance experiment of 1974-1982 Aron-Dine *et al* (JEP 2013)
 - Oregon Medicaid Extension lottery of 2008 Finkelstein *et al* (QJE 2012)
- We recover small curvature: $\nu_g=0.35$ and $\nu_b=0.25$
 - Income elasticity of health spending larger than non-medical expenditure (consistent with Hall, Jones (QJE 1997) for representative agent)

- OOP money matters little (after age 50): 0.3 out of 5.6 years
 - RAND Health Insurance experiment of 1974-1982 Aron-Dine *et al* (JEP 2013)
 - Oregon Medicaid Extension lottery of 2008 Finkelstein *et al* (QJE 2012)
- We recover small curvature: $\nu_g=0.35$ and $\nu_b=0.25$
 - Income elasticity of health spending larger than non-medical expenditure (consistent with Hall, Jones (QJE 1997) for representative agent)
 - But in the data expenditure share similar between types (consistent with Aguiar, Bils (AER 2015) with CEX data)

- OOP money matters little (after age 50): 0.3 out of 5.6 years
 - RAND Health Insurance experiment of 1974-1982 Aron-Dine *et al* (JEP 2013)
 - Oregon Medicaid Extension lottery of 2008 Finkelstein *et al* (QJE 2012)
- We recover small curvature: $\nu_g=0.35$ and $\nu_b=0.25$
 - Income elasticity of health spending larger than non-medical expenditure (consistent with Hall, Jones (QJE 1997) for representative agent)
 - But in the data expenditure share similar between types (consistent with Aguiar, Bils (AER 2015) with CEX data)
 - \triangleright This is because value of good health $(V_g^e V_b^e)$ higher for dropouts

- OOP money matters little (after age 50): 0.3 out of 5.6 years
 - RAND Health Insurance experiment of 1974-1982 Aron-Dine *et al* (JEP 2013)
 - Oregon Medicaid Extension lottery of 2008 Finkelstein *et al* (QJE 2012)
- We recover small curvature: $\nu_g=0.35$ and $\nu_b=0.25$
 - Income elasticity of health spending larger than non-medical expenditure (consistent with Hall, Jones (QJE 1997) for representative agent)
 - But in the data expenditure share similar between types (consistent with Aguiar, Bils (AER 2015) with CEX data)
 - \triangleright This is because value of good health $(V_g^e V_b^e)$ higher for dropouts
- We recover small λ_{1g} and λ_{1b}

- OOP money matters little (after age 50): 0.3 out of 5.6 years
 - RAND Health Insurance experiment of 1974-1982 Aron-Dine *et al* (JEP 2013)
 - Oregon Medicaid Extension lottery of 2008 Finkelstein *et al* (QJE 2012)
- We recover small curvature: $\nu_g=0.35$ and $\nu_b=0.25$
 - Income elasticity of health spending larger than non-medical expenditure (consistent with Hall, Jones (QJE 1997) for representative agent)
 - But in the data expenditure share similar between types (consistent with Aguiar, Bils (AER 2015) with CEX data)
 - \triangleright This is because value of good health $(V_g^e V_b^e)$ higher for dropouts
- We recover small λ_{1g} and λ_{1b}
 - This is because of low ratio of medical to non-medical expenditure (0.18)

Good health	Γ_{hg}	λ^e_{0h}	λ_{1h}	ν_h
College Dropouts	0.951 0.895	0.935 0.884	3.5×10^{-5}	0.35
Bad health College Dropouts	0.386 0.125	0.367 0.114	1.6×10 ⁻⁵	0.25

Panel A: Health Transition Parameters

Panel B: Decomposition of the Life Expectancy Gradient

	Full model	μ^{c}	x ^c	λ^c_{0h}
Life expectancy	5.6	0.7	0.3	4.8
Healthy life expectancy	13.2	1.8	0.7	11.5

Welfare of different types

	CG-HSG	CG-HSD
Compensated variations $(1 + \Delta_{(x+c)})$		
Health diff: none Health diff: quantity and quality of life	1.25 2.86	1.64 21.30

Welfare of different types

	CG-HSG	CG-HSD
Compensated variations $(1 + \Delta_{(x+c)})$		
Health diff: none Health diff: quantity and quality of life	1.25 2.86	1.64 21.30
Endogenous health choices	2.26	6.86

• This is still a very large difference.

Quantitative Model

1. Add realistic feautres: life cycle, incomplete markets

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in \{\eta_1, \eta_2\}$

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in \{\eta_1, \eta_2\}$
 - Main empirical problem:

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in \{\eta_1, \eta_2\}$
 - Main empirical problem:
 - Across types: higher spending leads to better health transitions

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in \{\eta_1, \eta_2\}$
 - Main empirical problem:
 - Across types: higher spending leads to better health transitions
 - But in panel dimension: higher spending leads to worse outcomes

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in \{\eta_1, \eta_2\}$
 - Main empirical problem:
 - Across types: higher spending leads to better health transitions
 - But in panel dimension: higher spending leads to worse outcomes
 - Health outlook shock

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in \{\eta_1, \eta_2\}$
 - Main empirical problem:
 - Across types: higher spending leads to better health transitions
 - But in panel dimension: higher spending leads to worse outcomes
 - Health outlook shock
 - Changes return to health investment and probability of health outcomes

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in {\eta_1, \eta_2}$
 - Main empirical problem:
 - Across types: higher spending leads to better health transitions
 - But in panel dimension: higher spending leads to worse outcomes
 - Health outlook shock
 - Changes return to health investment and probability of health outcomes
 - It happens between t and t + 1, after consumption c has been chosen

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in {\eta_1, \eta_2}$
 - Main empirical problem:
 - Across types: higher spending leads to better health transitions
 - But in panel dimension: higher spending leads to worse outcomes
 - Health outlook shock
 - · Changes return to health investment and probability of health outcomes
 - It happens between t and t + 1, after consumption c has been chosen
- 3. Add medical treatment implementation shock ϵ

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in {\eta_1, \eta_2}$
 - Main empirical problem:
 - Across types: higher spending leads to better health transitions
 - But in panel dimension: higher spending leads to worse outcomes
 - Health outlook shock
 - · Changes return to health investment and probability of health outcomes
 - It happens between t and t + 1, after consumption c has been chosen
- 3. Add medical treatment implementation shock ϵ
 - Mechanism to account for individual variation in health spending

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in {\eta_1, \eta_2}$
 - Main empirical problem:
 - Across types: higher spending leads to better health transitions
 - But in panel dimension: higher spending leads to worse outcomes
 - Health outlook shock
 - · Changes return to health investment and probability of health outcomes
 - It happens between t and t + 1, after consumption c has been chosen
- 3. Add medical treatment implementation shock ϵ
 - · Mechanism to account for individual variation in health spending
 - Once contingent health spending x (ω, η) has been chosen, shock determines actual treatment x̃ = x (ω, η) ε obtained.

- 1. Add realistic feautres: life cycle, incomplete markets
- 2. Add new *health outlook shock* $\eta \in {\eta_1, \eta_2}$
 - Main empirical problem:
 - Across types: higher spending leads to better health transitions
 - But in panel dimension: higher spending leads to worse outcomes
 - Health outlook shock
 - · Changes return to health investment and probability of health outcomes
 - It happens between t and t + 1, after consumption c has been chosen
- 3. Add medical treatment implementation shock ϵ
 - · Mechanism to account for individual variation in health spending
 - Once contingent health spending x (ω, η) has been chosen, shock determines actual treatment x̃ = x (ω, η) ε obtained.
 - Distribution: $\log \epsilon \sim N\left(-\frac{1}{2}\sigma_{\epsilon}^{2},\sigma_{\epsilon}^{2}
 ight)$

• The individual state is given by $\omega = (e, i, h, a) \in E \times I \times H \times A \equiv \Omega$.

- The individual state is given by $\omega = (e, i, h, a) \in E \times I \times H \times A \equiv \Omega$.
- The household chooses c, $x(\eta)$, $y(\eta)$ such that

$$v^{ei}(h,a) = \max\left\{u^{i}(c,h) + \beta^{e}\gamma^{i}(h)\sum_{h',\eta}\pi^{ih}_{\eta}\int_{\epsilon}\Gamma^{ei}[h'\mid h,\eta,x(\eta)\epsilon] \; v^{e,i+1}(h',a') \; f(d\epsilon)\right\}$$

- The individual state is given by $\omega = (e, i, h, a) \in E \times I \times H \times A \equiv \Omega$.
- The household chooses c, $x(\eta)$, $y(\eta)$ such that

$$v^{ei}(h,a) = \max\left\{u^{i}(c,h) + \beta^{e}\gamma^{i}(h)\sum_{h',\eta}\pi^{ih}_{\eta}\int_{\epsilon}\Gamma^{ei}[h'\mid h,\eta,x(\eta)\epsilon] \; v^{e,i+1}(h',a') \; f(d\epsilon)\right\}$$

• Subject to the budget constraint and the law of motion for cash in hand

$$c + x(\eta) + y(\eta) = a$$

$$a' = [y(\eta) - (\epsilon - 1)x(\eta)]R + w^{e}$$

- The individual state is given by $\omega = (e, i, h, a) \in E \times I \times H \times A \equiv \Omega$.
- The household chooses c, $x(\eta)$, $y(\eta)$ such that

$$v^{ei}(h,a) = \max\left\{u^{i}(c,h) + \beta^{e}\gamma^{i}(h)\sum_{h',\eta}\pi^{ih}_{\eta}\int_{\epsilon}\Gamma^{ei}[h'\mid h,\eta,x(\eta)\epsilon] \; v^{e,i+1}(h',a') \; f(d\epsilon)\right\}$$

• Subject to the budget constraint and the law of motion for cash in hand

$$c + x(\eta) + y(\eta) = a$$

$$a' = [y(\eta) - (\epsilon - 1)x(\eta)]R + w^{e}$$

• The FOC give:

- The individual state is given by $\omega = (e, i, h, a) \in E \times I \times H \times A \equiv \Omega$.
- The household chooses c, $x(\eta)$, $y(\eta)$ such that

$$v^{ei}(h,a) = \max\left\{u^{i}(c,h) + \beta^{e}\gamma^{i}(h)\sum_{h',\eta}\pi^{ih}_{\eta}\int_{\epsilon}\Gamma^{ei}[h'\mid h,\eta,x(\eta)\epsilon] \; v^{e,i+1}(h',a') \; f(d\epsilon)\right\}$$

• Subject to the budget constraint and the law of motion for cash in hand

$$c + x(\eta) + y(\eta) = a$$

$$a' = [y(\eta) - (\epsilon - 1)x(\eta)]R + w^{e}$$

- The FOC give:
 - One Euler equation for consumption c

- The individual state is given by $\omega = (e, i, h, a) \in E \times I \times H \times A \equiv \Omega$.
- The household chooses c, $x(\eta)$, $y(\eta)$ such that

$$v^{ei}(h,a) = \max\left\{u^{i}(c,h) + \beta^{e}\gamma^{i}(h)\sum_{h',\eta}\pi^{ih}_{\eta}\int_{\epsilon}\Gamma^{ei}[h'\mid h,\eta,x(\eta)\epsilon] \; v^{e,i+1}(h',a') \; f(d\epsilon)\right\}$$

• Subject to the budget constraint and the law of motion for cash in hand

$$c + x(\eta) + y(\eta) = a$$

$$a' = [y(\eta) - (\epsilon - 1)x(\eta)]R + w^{e}$$

- The FOC give:
 - One Euler equation for consumption c
 - One Euler equation for health investments at each state $\boldsymbol{\eta}$

• Consumption

$$u_{c}^{i}[h,c(\omega)] = \beta^{e}\gamma^{i}(h)R\sum_{h'\eta}\pi_{\eta}^{ih}\int_{\epsilon}\Gamma^{ei}[h'\mid h,\eta,x(\omega,\eta)\epsilon] u_{c}^{i+1}[h',c(\omega,\eta,h',\epsilon)]f(d\epsilon)$$

• Consumption

$$u_{c}^{i}[h,c(\omega)] = \beta^{e} \gamma^{i}(h) R \sum_{h'\eta} \pi_{\eta}^{ih} \int_{\epsilon} \Gamma^{ei}[h' \mid h,\eta,x(\omega,\eta)\epsilon] u_{c}^{i+1}[h',c(\omega,\eta,h',\epsilon)] f(d\epsilon)$$

• Health investments at each state η :

$$R\sum_{h'}\int_{\epsilon}\epsilon \Gamma^{ei}[h' \mid h, \eta, x(\omega, \eta)\epsilon] \ u_{c}^{i+1}[h', c(\omega, \eta, h', \epsilon)] \ f(d\epsilon) = \sum_{h'}\int_{\epsilon}\epsilon \Gamma_{x}^{ei}[h' \mid h, \eta, x(\omega, \eta)\epsilon] \ v^{e,i+1}\{h', a'(\omega, \eta, \epsilon)\} \ f(d\epsilon)$$

Estimation

• We aggregate wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \dots, p_5\}$

- We aggregate wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \dots, p_5\}$
 - State space is the countable set $\widehat{\Omega}\equiv {\it E}\times {\it I}\times {\it H}\times {\it P}$

- We aggregate wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \dots, p_5\}$
 - State space is the countable set $\widehat{\Omega} \equiv E \times I \times H \times P$
- Need to specify functional forms

- We aggregate wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \ldots, p_5\}$
 - State space is the countable set $\widehat{\Omega} \equiv E \times I \times H \times P$
- Need to specify functional forms
 - Utility function

$$u^{i}(h,c) = \alpha_{h} + \chi^{i}_{h} \frac{c^{1-\sigma_{c}}}{1-\sigma_{c}}$$

- We aggregate wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \ldots, p_5\}$
 - State space is the countable set $\widehat{\Omega} \equiv E \times I \times H \times P$
- Need to specify functional forms
 - Utility function

$$u^{i}(h,c) = \alpha_{h} + \chi^{i}_{h} \frac{c^{1-\sigma_{c}}}{1-\sigma_{c}}$$

Health transitions

$$\Gamma^{ie}(g|h,\eta,x) = \lambda_{0\eta}^{ieh} + \lambda_{1\eta}^{ih} \frac{x^{1-\nu^{h}}}{1-\nu^{h}}$$

- We aggregate wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \ldots, p_5\}$
 - State space is the countable set $\widehat{\Omega} \equiv E \times I \times H \times P$
- Need to specify functional forms
 - Utility function

$$u^{i}(h,c) = \alpha_{h} + \chi^{i}_{h} \frac{c^{1-\sigma_{c}}}{1-\sigma_{c}}$$

Health transitions

$$\Gamma^{ie}(g|h,\eta,x) = \lambda_{0\eta}^{ieh} + \lambda_{1\eta}^{ih} \frac{x^{1-\nu^{h}}}{1-\nu^{h}}$$

• Need to estimate several transitions in HRS data

- We aggregate wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \ldots, p_5\}$
 - State space is the countable set $\widehat{\Omega} \equiv E \times I \times H \times P$
- Need to specify functional forms
 - Utility function

$$u^{i}(h,c) = \alpha_{h} + \chi^{i}_{h} \frac{c^{1-\sigma_{c}}}{1-\sigma_{c}}$$

• Health transitions

$$\Gamma^{ie}(g|h,\eta,x) = \lambda_{0\eta}^{ieh} + \lambda_{1\eta}^{ih} \frac{x^{1-\nu^{h}}}{1-\nu^{h}}$$

- Need to estimate several transitions in HRS data
 - Survival rates $\widetilde{\gamma}_h^i$

- We aggregate wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \ldots, p_5\}$
 - State space is the countable set $\widehat{\Omega} \equiv E \times I \times H \times P$
- Need to specify functional forms
 - Utility function

$$u^{i}(h,c) = \alpha_{h} + \chi^{i}_{h} \frac{c^{1-\sigma_{c}}}{1-\sigma_{c}}$$

Health transitions

$$\Gamma^{ie}(g|h,\eta,x) = \lambda_{0\eta}^{ieh} + \lambda_{1\eta}^{ih} \frac{x^{1-\nu^{h}}}{1-\nu^{h}}$$

- Need to estimate several transitions in HRS data
 - Survival rates $\widetilde{\gamma}_h^i$
 - Health transitions $\widetilde{\Gamma}(h_g|\omega)$

- We aggregate wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \ldots, p_5\}$
 - State space is the countable set $\widehat{\Omega} \equiv E \times I \times H \times P$
- Need to specify functional forms
 - Utility function

$$u^{i}(h,c) = \alpha_{h} + \chi^{i}_{h} \frac{c^{1-\sigma_{c}}}{1-\sigma_{c}}$$

• Health transitions

$$\Gamma^{ie}(g|h,\eta,x) = \lambda_{0\eta}^{ieh} + \lambda_{1\eta}^{ih} \frac{x^{1-\nu^{h}}}{1-\nu^{h}}$$

- Need to estimate several transitions in HRS data
 - Survival rates $\widetilde{\gamma}_h^i$
 - Health transitions $\widetilde{\Gamma}(h_g|\omega)$
 - Health transitions conditional on health spending $\widetilde{\varphi}\left(h_{g}|\omega,\tilde{x}\right)$

- We aggregate wealth data a_j into quintiles $p_j \in P \equiv \{p_1, \ldots, p_5\}$
 - State space is the countable set $\widehat{\Omega} \equiv E \times I \times H \times P$
- Need to specify functional forms
 - Utility function

$$u^{i}(h,c) = \alpha_{h} + \chi^{i}_{h} \frac{c^{1-\sigma_{c}}}{1-\sigma_{c}}$$

• Health transitions

$$\Gamma^{ie}(g|h,\eta,x) = \lambda_{0\eta}^{ieh} + \lambda_{1\eta}^{ih} \frac{x^{1-\nu^{h}}}{1-\nu^{h}}$$

- Need to estimate several transitions in HRS data
 - Survival rates $\widetilde{\gamma}_h^i$
 - Health transitions $\widetilde{\Gamma}(h_g|\omega)$
 - Health transitions conditional on health spending $\widetilde{\varphi}\left(h_{g}|\omega,\tilde{x}\right)$
 - Joint health and wealth transitions $\widetilde{\Gamma}\left(h',p'|\omega
 ight)$

• Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

- Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model
 - $\rightarrow~$ Use the restrictions imposed by the FOC

• Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

 $\rightarrow~$ Use the restrictions imposed by the FOC

• Two types of parameters

• Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

 $\rightarrow~$ Use the restrictions imposed by the FOC

• Two types of parameters

• Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

 $\rightarrow~$ Use the restrictions imposed by the FOC

• Two types of parameters

1/ Preferences: $\theta_1 = \{\beta^e, \sigma_c, \chi^i_h, \alpha_h\}$

• Can be estimated independently from other parameters

- Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

 $\rightarrow~$ Use the restrictions imposed by the FOC

• Two types of parameters

- Can be estimated independently from other parameters
- Use consumption Euler equation to obtain $\beta^e, \sigma_c, \chi^i_h$

- Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

 $\rightarrow~$ Use the restrictions imposed by the FOC

• Two types of parameters

- Can be estimated independently from other parameters
- Use consumption Euler equation to obtain $\beta^e, \sigma_c, \chi^i_h$
- Use VSL and HRQL conditions to estimate α_h

- Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

 $\rightarrow~$ Use the restrictions imposed by the FOC

• Two types of parameters

- Can be estimated independently from other parameters
- Use consumption Euler equation to obtain β^e, σ_c, χⁱ_h
- Use VSL and HRQL conditions to estimate α_h
- 2/ Health technology: $\theta_2 = \{\lambda_{0\eta}^{ieh}, \lambda_{1\eta}^{ieh}, \nu^{ih}, \pi_{\eta}^{ih}, \sigma_{\epsilon}^2\}$

- Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

 $\rightarrow~$ Use the restrictions imposed by the FOC

• Two types of parameters

- Can be estimated independently from other parameters
- Use consumption Euler equation to obtain β^e, σ_c, χⁱ_h
- Use VSL and HRQL conditions to estimate α_h
- 2/ Health technology: $\theta_2 = \{\lambda_{0\eta}^{ieh}, \lambda_{1\eta}^{ieh}, \nu^{ih}, \pi_{\eta}^{ih}, \sigma_{\epsilon}^2\}$
 - Requires $\theta_1 = \{\beta^e, \sigma_c, \chi_h^i, \alpha_h\}$ as input

- Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

 $\rightarrow~$ Use the restrictions imposed by the FOC

• Two types of parameters

- Can be estimated independently from other parameters
- Use consumption Euler equation to obtain β^e, σ_c, χⁱ_h
- Use VSL and HRQL conditions to estimate α_h
- 2/ Health technology: $\theta_2 = \{\lambda_{0\eta}^{ieh}, \lambda_{1\eta}^{ieh}, \nu^{ih}, \pi_{\eta}^{ih}, \sigma_{\epsilon}^2\}$
 - Requires $\theta_1 = \{\beta^e, \sigma_c, \chi_h^i, \alpha_h\}$ as input
 - Use medical spending Euler equations plus health transitions

- Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

 $\rightarrow~$ Use the restrictions imposed by the FOC

• Two types of parameters

- Can be estimated independently from other parameters
- Use consumption Euler equation to obtain $\beta^e, \sigma_c, \chi_h^i$
- Use VSL and HRQL conditions to estimate α_h
- 2/ Health technology: $\theta_2 = \{\lambda_{0\eta}^{ieh}, \lambda_{1\eta}^{ieh}, \nu^{ih}, \pi_{\eta}^{ih}, \sigma_{\epsilon}^2\}$
 - Requires $\theta_1 = \{\beta^e, \sigma_c, \chi_h^i, \alpha_h\}$ as input
 - Use medical spending Euler equations plus health transitions
 - <u>Problem</u>: we observe neither η_j nor ϵ_j

- Estimate vector of parameters $\boldsymbol{\theta}$ by GMM without solving the model

 $\rightarrow~$ Use the restrictions imposed by the FOC

• Two types of parameters

- Can be estimated independently from other parameters
- Use consumption Euler equation to obtain β^e, σ_c, χⁱ_h
- Use VSL and HRQL conditions to estimate α_h
- 2/ Health technology: $\theta_2 = \{\lambda_{0\eta}^{ieh}, \lambda_{1\eta}^{ieh}, \nu^{ih}, \pi_{\eta}^{ih}, \sigma_{\epsilon}^2\}$
 - Requires $\theta_1 = \{\beta^e, \sigma_c, \chi_h^i, \alpha_h\}$ as input
 - Use medical spending Euler equations plus health transitions
 - <u>Problem</u>: we observe neither η_j nor ϵ_j
 - Need to recover posterior probability of η_i from observed health spending \tilde{x}_i

Preliminary Estimates: Preferences

$$\beta^{e} R \; \tilde{\gamma}_{h}^{i} \frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} \frac{\chi_{h_{j}^{i}}^{i+1}}{\chi_{h}^{i}} \left(\frac{c_{j}^{\prime}}{c_{j}}\right)^{-\sigma} = 1 \qquad \forall \omega \in \widetilde{\Omega}$$

• We use the sample average for all individuals j of the same type ω as a proxy for the expectation over η , h', and ϵ

$$\beta^{e} R \; \tilde{\gamma}_{h}^{i} \frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} \frac{\chi_{h_{j}^{i}}^{i+1}}{\chi_{h}^{i}} \left(\frac{c_{j}^{\prime}}{c_{j}}\right)^{-\sigma} = 1 \qquad \forall \omega \in \widetilde{\Omega}$$

• Normalize $\chi_g^i = 1$ and parameterize $\chi_b^i = \chi_b^0 \left(1 + \chi_b^1\right)^{(i-50)}$

$$\beta^{e} R \; \tilde{\gamma}_{h}^{i} \frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} \frac{\chi_{h_{j}^{i}}^{i+1}}{\chi_{h}^{i}} \left(\frac{c_{j}^{\prime}}{c_{j}}\right)^{-\sigma} = 1 \qquad \forall \omega \in \widetilde{\Omega}$$

- Normalize $\chi_g^i = 1$ and parameterize $\chi_b^i = \chi_b^0 \left(1 + \chi_b^1\right)^{(i-50)}$
- Use consumption growth from PSID by education, health, wealth, age

$$\beta^{e} R \; \tilde{\gamma}_{h}^{i} \frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} \frac{\chi_{h_{j}^{i}}^{i+1}}{\chi_{h}^{i}} \left(\frac{c_{j}^{\prime}}{c_{j}}\right)^{-\sigma} = 1 \qquad \forall \omega \in \widetilde{\Omega}$$

- Normalize $\chi_g^i = 1$ and parameterize $\chi_b^i = \chi_b^0 \left(1 + \chi_b^1\right)^{(i-50)}$
- Use consumption growth from PSID by education, health, wealth, age
- We obtain

$$\beta^{e} R \; \tilde{\gamma}_{h}^{i} \frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} \frac{\chi_{h_{j}^{i}}^{i+1}}{\chi_{h}^{i}} \left(\frac{c_{j}^{\prime}}{c_{j}}\right)^{-\sigma} = 1 \qquad \forall \omega \in \widetilde{\Omega}$$

- Normalize $\chi_g^i = 1$ and parameterize $\chi_b^i = \chi_b^0 \left(1 + \chi_b^1\right)^{(i-50)}$
- Use consumption growth from PSID by education, health, wealth, age
- We obtain
 - Health and consumption are complements Finkelstein, Luttmer, Notowidigdo (JEEA 2012) Koijen, Van Nieuwerburgh, Yogo (JF 2016)

$$\beta^{e} R \; \tilde{\gamma}_{h}^{i} \frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} \frac{\chi_{h_{j}^{i}}^{i+1}}{\chi_{h}^{i}} \left(\frac{c_{j}^{\prime}}{c_{j}}\right)^{-\sigma} = 1 \qquad \forall \omega \in \widetilde{\Omega}$$

- Normalize $\chi_g^i = 1$ and parameterize $\chi_b^i = \chi_b^0 \left(1 + \chi_b^1\right)^{(i-50)}$
- Use consumption growth from PSID by education, health, wealth, age
- We obtain
 - Health and consumption are complements Finkelstein, Luttmer, Notowidigdo (JEEA 2012) Koijen, Van Nieuwerburgh, Yogo (JF 2016)
 - 2. More so for older people

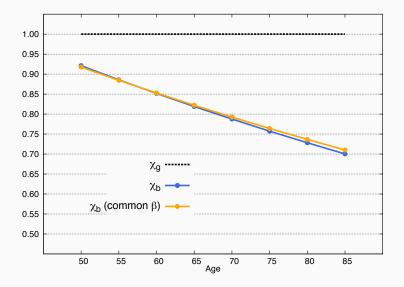
$$\beta^{e} R \; \tilde{\gamma}_{h}^{i} \frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} \frac{\chi_{h_{j}^{i}}^{i+1}}{\chi_{h}^{i}} \left(\frac{c_{j}^{\prime}}{c_{j}}\right)^{-\sigma} = 1 \qquad \forall \omega \in \widetilde{\Omega}$$

- Normalize $\chi_g^i = 1$ and parameterize $\chi_b^i = \chi_b^0 \left(1 + \chi_b^1\right)^{(i-50)}$
- Use consumption growth from PSID by education, health, wealth, age
- We obtain
 - Health and consumption are complements Finkelstein, Luttmer, Notowidigdo (JEEA 2012) Koijen, Van Nieuwerburgh, Yogo (JF 2016)
 - 2. More so for older people
 - 3. Uneducated are NOT more impatient: they have worse health outlook ²⁵

RESULTS

Men sample (with $r = 2\%$)				
	β edu specific		eta common	
σ	1.5		1.5	
β^d (s.e.)	0.8861	(0.0175)	0.8720	(0.0064)
eta^h (s.e.)	0.8755	(0.0092)	0.8720	(0.0064)
eta^{c} (s.e.)	0.8634	(0.0100)	0.8720	(0.0064)
χ^0_b (s.e.)	0.9211	(0.0575)	0.9176	(0.0570)
χ^1_b (s.e.)	-0.0078	(0.0035)	-0.0073	(0.0035)
observations	15,432		15,432	
moment conditions	240		240	
parameters	5		3	
α_g			0.066	
α_b			0.048	

RESULTS



Preliminary Estimates: Health Technology

THE MOMENT CONDITIONS

• As in the simple model, we use

THE MOMENT CONDITIONS

- As in the simple model, we use
 - Health spending Euler equation: $\forall \omega \in \widetilde{\Omega}$ and $\forall \eta \in \{\eta_g, \eta_b\}$

$$R\sum_{h'}\frac{1}{M_{\omega,h'}}\sum_{j}\mathbf{I}_{\omega_{j}=\omega,h'_{j}=h'}\widetilde{x}_{j}\Gamma^{e_{j}i_{j}}[h'_{j}\mid h_{j},\eta,\widetilde{x}_{j}]\chi^{i_{j}+1}(h'_{j})(c'_{j})^{-\sigma_{c}}Pr[\eta|\omega_{j},\widetilde{x}_{j}] = \sum_{h'}\frac{1}{M_{\omega,h'}}\sum_{j}\mathbf{I}_{\omega_{j}=\omega,h'_{j}=h'}\widetilde{x}_{j}\Gamma^{e_{j}i_{j}}_{x}[h'_{j}\mid h_{j},\eta,\widetilde{x}_{j}]\mathbf{v}^{e_{j},i_{j+1}}(h'_{j},p'_{j})Pr[\eta|\omega_{j},\widetilde{x}_{j}]$$

THE MOMENT CONDITIONS

- As in the simple model, we use
 - Health spending Euler equation: $\forall \omega \in \widetilde{\Omega}$ and $\forall \eta \in \{\eta_g, \eta_b\}$

$$R\sum_{h'} \frac{1}{M_{\omega,h'}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega,h'_{j}=h'} \widetilde{x}_{j} \Gamma^{e_{j}i_{j}}[h'_{j} \mid h_{j},\eta,\widetilde{x}_{j}] \chi^{i_{j}+1}(h'_{j}) (c'_{j})^{-\sigma_{c}} \Pr\left[\eta|\omega_{j},\widetilde{x}_{j}\right] = \sum_{h'} \frac{1}{M_{\omega,h'}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega,h'_{j}=h'} \widetilde{x}_{j} \Gamma^{e_{j}i_{j}}_{x}[h'_{j} \mid h_{j},\eta,\widetilde{x}_{j}] \mathbf{v}^{e_{j},i_{j+1}} (h'_{j},\mathbf{p}'_{j}) \Pr\left[\eta|\omega_{j},\widetilde{x}_{j}\right]$$

• Health transitions: $\forall \omega \in \widetilde{\Omega}$

$$\widetilde{\Gamma}(h_{g} \mid \omega) = \sum_{\eta} \pi_{\eta}^{ih} \left(\lambda_{0\eta}^{ieh} + \frac{\lambda_{1\eta}^{ieh}}{1 - \nu^{ih}} \frac{1}{M_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} \, \widetilde{x}_{j}^{1-\nu^{ih}} \Pr\left[\eta | \omega_{j}, \widetilde{x}_{j}\right] \right)$$

 $\bullet\,$ Key problem: How to deal with unobserved health shock η

- Key problem: How to deal with unobserved health shock $\boldsymbol{\eta}$
 - Needed to evaluate the FOC for health and the health transitions

- $\bullet\,$ Key problem: How to deal with unobserved health shock η
 - Needed to evaluate the FOC for health and the health transitions
 - We construct the posterior probability of η given observed health investment x
 _j and the individual state ω_j

$$\Pr\left[\eta_{g}|\omega_{j},\widetilde{x}_{j}\right] = \frac{\Pr\left[\widetilde{x}_{j}|\omega_{j},\eta_{g}\right]\Pr\left[\eta_{g}|\omega_{j}\right]}{\Pr\left[\widetilde{x}_{j}|\omega_{j}\right]}$$

- $\bullet\,$ Key problem: How to deal with unobserved health shock η
 - Needed to evaluate the FOC for health and the health transitions
 - We construct the posterior probability of η given observed health investment x
 _j and the individual state ω_j

$$\Pr\left[\eta_{g}|\omega_{j},\widetilde{x}_{j}\right] = \frac{\Pr\left[\widetilde{x}_{j}|\omega_{j},\eta_{g}\right]\Pr\left[\eta_{g}|\omega_{j}\right]}{\Pr\left[\widetilde{x}_{j}|\omega_{j}\right]}$$

• where $Pr\left[\widetilde{x}_{j}|\omega_{j},\eta_{g}\right]$ is the density of $\epsilon_{j}=\widetilde{x}_{j}/x\left(\omega_{j},\eta_{g}\right)$

- $\bullet\,$ Key problem: How to deal with unobserved health shock η
 - Needed to evaluate the FOC for health and the health transitions
 - We construct the posterior probability of η given observed health investment x
 _j and the individual state ω_j

$$\Pr\left[\eta_{g}|\omega_{j},\widetilde{x}_{j}\right] = \frac{\Pr\left[\widetilde{x}_{j}|\omega_{j},\eta_{g}\right]\Pr\left[\eta_{g}|\omega_{j}\right]}{\Pr\left[\widetilde{x}_{j}|\omega_{j}\right]}$$

- where $Pr\left[\widetilde{x}_{j}|\omega_{j},\eta_{g}\right]$ is the density of $\epsilon_{j}=\widetilde{x}_{j}/x\left(\omega_{j},\eta_{g}\right)$
- where $\Pr\left[\eta_{g}|\omega_{j}
 ight]=\pi_{\eta_{g}}^{ih}$

- Key problem: How to deal with unobserved health shock $\boldsymbol{\eta}$
 - Needed to evaluate the FOC for health and the health transitions
 - We construct the posterior probability of η given observed health investment x
 _j and the individual state ω_j

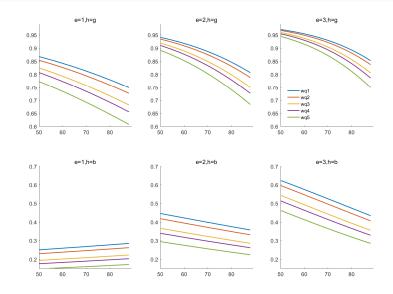
$$\Pr\left[\eta_{g}|\omega_{j},\widetilde{x}_{j}\right] = \frac{\Pr\left[\widetilde{x}_{j}|\omega_{j},\eta_{g}\right]\Pr\left[\eta_{g}|\omega_{j}\right]}{\Pr\left[\widetilde{x}_{j}|\omega_{j}\right]}$$

- where $Pr\left[\widetilde{x}_{j}|\omega_{j},\eta_{g}\right]$ is the density of $\epsilon_{j} = \widetilde{x}_{j}/x\left(\omega_{j},\eta_{g}\right)$
- where $Pr\left[\eta_{g}|\omega_{j}\right] = \pi_{\eta_{g}}^{ih}$
- · And we weight every individual observation by this probability

- Finally, need to estimate
 - the contingent health spending rule $x(\omega,\eta)$
 - the probability distribution of health outlooks sock, $\pi^{ih}_{\eta_x}$
 - the variance of the medical implementation error, σ_{ϵ}^2
- We identify all these objects through the observed health transitions $\widetilde{\varphi}(h_g|\omega, \tilde{x})$ as function of the state ω and health spending \tilde{x}

$$\underbrace{\Pr\left[h_{g}|\omega,\widetilde{x}\right]}_{observed in the data} = \Gamma^{ei}\left[h_{g} \mid h, \eta_{g}, \widetilde{x}\right] \underbrace{\Pr\left[\eta_{g}|\omega,\widetilde{x}\right]}_{posterior} + \Gamma^{ei}\left[h_{g} \mid h, \eta_{b}, \widetilde{x}\right] \underbrace{\Pr\left[\eta_{b}|\omega,\widetilde{x}\right]}_{posterior}$$

AVERAGE HEALTH TRANSITIONS

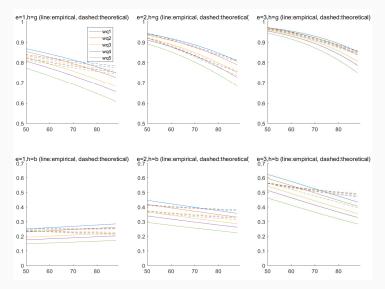


IMPLICATIONS FOR HEALTH TRANSITIONS

- We have preliminary estimates of health technology parameters $\theta_2 = \{\lambda_{0\eta}^{ieh}, \lambda_{1\eta}^{eh}, \nu^{ih}, \pi_{\eta}^{ih}, \sigma_{\epsilon}^2\}$
- They generate health transitions that are consistent with
 - More educated have better transitions
 - Wealthier have better transitions
 - Older have worse transitions
- However, quantitatively, two problems remain
 - Worsening of health transitions with age milder than in the data (for some types)
 - Dispersion of transitions with wealth smaller than in the data

PRELIMINARY ESTIMATES

AVERAGE HEALTH TRANSITIONS



• We have discussed how to measure inequality between types by incorporating

- We have discussed how to measure inequality between types by incorporating
 - differences in consumption

- We have discussed how to measure inequality between types by incorporating
 - differences in consumption
 - differences in life expectancy

- We have discussed how to measure inequality between types by incorporating
 - differences in consumption
 - differences in life expectancy
 - differences in health

- We have discussed how to measure inequality between types by incorporating
 - differences in consumption
 - differences in life expectancy
 - differences in health
- We have found much larger numbers than those associated to consumption alone.

- We have discussed how to measure inequality between types by incorporating
 - differences in consumption
 - differences in life expectancy
 - differences in health
- We have found much larger numbers than those associated to consumption alone.
- We estimate both health preferences and a production function from out of pocket expenditures (in the U.S.)

- We have discussed how to measure inequality between types by incorporating
 - differences in consumption
 - differences in life expectancy
 - differences in health
- We have found much larger numbers than those associated to consumption alone.
- We estimate both health preferences and a production function from out of pocket expenditures (in the U.S.)
 - Limited value to out of pocket health investments after age 50

- We have discussed how to measure inequality between types by incorporating
 - differences in consumption
 - differences in life expectancy
 - differences in health
- We have found much larger numbers than those associated to consumption alone.
- We estimate both health preferences and a production function from out of pocket expenditures (in the U.S.)
 - Limited value to out of pocket health investments after age 50
- We still have to finish

- We have discussed how to measure inequality between types by incorporating
 - differences in consumption
 - differences in life expectancy
 - differences in health
- We have found much larger numbers than those associated to consumption alone.
- We estimate both health preferences and a production function from out of pocket expenditures (in the U.S.)
 - Limited value to out of pocket health investments after age 50
- We still have to finish
 - Fully-fledged life cycle model without complete markets and trace its welfare implications.

- We have discussed how to measure inequality between types by incorporating
 - differences in consumption
 - differences in life expectancy
 - differences in health
- We have found much larger numbers than those associated to consumption alone.
- We estimate both health preferences and a production function from out of pocket expenditures (in the U.S.)
 - Limited value to out of pocket health investments after age 50
- We still have to finish
 - Fully-fledged life cycle model without complete markets and trace its welfare implications.
 - So far not that different from calibrated simple version.

- 1. Estimation is closely dependant on U.S. features
 - Limited health insurance.
 - Not well defined role of Out of Pocket Expenditures. We are not sure if it means the same things across education groups.
- 2. Would love to use non U.S. data