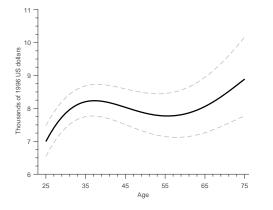
Dynastic Precautionary Savings

Corina Boar Princeton University

Facing Demographic Change in a Challenging Economic Environment October 27, 2017

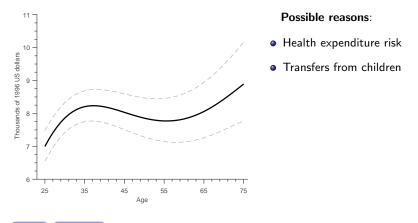
Motivation

- Consumption of retired parents is backloaded
- Backloading postdates the resolution of own income risk



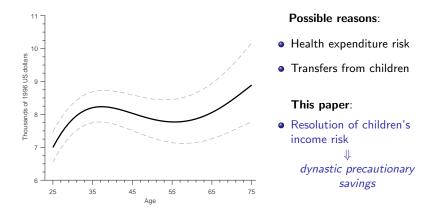
Motivation

- Consumption of retired parents is backloaded
- Backloading postdates the resolution of own income risk



Motivation

- Consumption of retired parents is backloaded
- Backloading postdates the resolution of own income risk



Contributions of this paper

1 Provide empirical evidence for dynastic precautionary behavior

- Examine the response of parent's consumption to child's income risk
- Exploit variation in permanent income risk across age and sectors
- Analyze robustness to endogeneity concerns

Ø Build a model of dynastic precautionary saving

- Parent and child save separately: non-cooperative + no commitment
 - Can identify wealth position of overlapping generations + size and timing of intergenerational transfers
 - Strategic interactions between parent and child
 - Contrast with unitary household model (no strategic interactions)
- Counterfactual
 - Contribution to parental wealth and intergenerational transfers

Empirical

- Parent's consumption decreases with child's permanent income risk
 - Response is nearly as large as to own income risk
- Permanent income risk is decreasing over age, with variation across sectors (both in levels and slopes)
 - Parents of children younger than 40 consume \$2,945 less per year because uncertainty is yet to be resolved (conditional on controls)
 - Parents of children in finance sector consume 3% less than parents of government employees because of higher uncertainty (conditional on controls)

Quantitative

- Model with strategic interactions predicts dynastic precautionary behavior closer to data than model without strategic interactions
 - *No strategic interactions*: dynastic precautionary motive is more important than precautionary motive
 - *Strategic interactions*: relative importance of precautionary motives is flipped because of overconsumption by children
- Counterfactual
 - Dynastic precautionary wealth is $\approx \frac{1}{4}$ of aggregate wealth
 - Intergenerational transfers are mostly driven by dynastic uncertainty

Related literature

Consumption-saving over the life-cycle, especially at older age

- *mortality and medical risk*: Hubbard et al. (1995), Palumbo (1999), de Nardi et al. (2010), Kopecky and Koreshova (2014)
- *bequest motive*: Kotlikoff and Summers (1981), Kopczuk and Lupton (2007), Ameriks et al. (2011), de Nardi et al. (2013), Lockwood (2013)

Precautionary savings

• Kimball (1990), Strawczynski (1994), Caroll and Samwick (1997), Gourinchas and Parker (2002), Cagetti (2003), Kennickell and Lusardi (2005), Hurst et al. (2010)

Family as insurance

- empirical studies: Altonji et al. (1996), Attanasio et al. (2015), McGarry (1999, 2016)
- dynamics models of families: Nishiyama (2002), Kaplan (2012), Barczyck and Kredler (2014, 2016), Fahle (2015), Mommaerts (2015), Ameriks et al. (2016), Luo (2016)

Outline

Empirical analysis

- Data description
- Income uncertainty
- Test for dynastic precautionary savings
- Robustness analysis
- Ø Model
 - Environment and parameter values
 - Comparison between models
 - Counterfactual

Conclusion

Empirical evidence

Empirical test

• Pure life-cycle models (including warm-glow altruism) imply:

$$c_{p} = F_{p}(Y_{p}, \sigma_{p}; \mathbf{X}_{p})$$
 and $c_{c} = F_{c}(Y_{c}, \sigma_{c}; \mathbf{X}_{c})$

• Models with altruism à la Barro (1974) imply:

$$c_{p} = \bar{F}_{p} \left(Y_{p}, \sigma_{p}, Y_{c}, \sigma_{c}; \mathbf{X}_{p}, \mathbf{X}_{c} \right) \quad \text{and} \quad c_{c} = \bar{F}_{c} \left(Y_{c}, \sigma_{c}, Y_{p}, \sigma_{p}; \mathbf{X}_{p}, \mathbf{X}_{c} \right)$$

Test by regressing:

- c_p on parent's income uncertainty and child's income uncertainty
- c_c on parent's income uncertainty and child's income uncertainty

Data

- Parent-child pairs
 - PSID Family Identification Mapping System
 - Parent with *n* children \Rightarrow *n* parent-child pairs
- Income uncertainty
 - PSID 1968-2013
 - Stratify by age and sector (N occupations \times M industries)
- Consumption
 - Later years (2005-2013): consumption directly from PSID
 - Early waves (1981-2003): use CEX to impute consumption based on an inverted food demand equation (Blundell et al., 2008)

Income uncertainty

• Income uncertainty about future income stream (permanent income)

$$Y_h^i \equiv \sum_{j=h+1}^H \frac{y_j^i}{R^{j-h}}$$

- Treat uncertainty as the standard deviation of forecast error of Y_h^i
- Predicted permanent income as of age h is

$$\hat{Y}_{h}^{i} \equiv \sum_{j=h+1}^{H} \frac{\hat{y}_{j,h}^{i}}{R^{j-h}}$$

How are earnings predicted?

$$y_j^i = \underbrace{\theta_0 + \mathbf{X}_h^i \theta_1 + \theta_3 \mathbf{t}_j}_{\hat{y}_{j,h}} + e_{j,h}^i$$

 \mathbf{X}_h^i : current and lagged income, age polynomial, dummies for current educational attainment, marital status, race and family size

 t_i : time trend

How are earnings predicted?

$$y_j^i = \underbrace{\theta_0 + \mathbf{X}_h^i \theta_1 + \theta_3 \mathbf{t}_j}_{\hat{y}_{j,h}} + \underbrace{\theta_{j,h}^i}_{e_{j,h}^i} + \underbrace{\theta_{j,h}^i}_{e_{j,h}^i}$$

 \mathbf{X}_{h}^{i} : current and lagged income, age polynomial, dummies for current educational attainment, marital status, race and family size

 t_i : time trend

Income uncertainty

• The forecast error of permanent income is

$$\mathcal{E}_{h}^{i}\equiv\sum_{j=h+1}^{H}rac{e_{j,h}^{i}}{R^{j-h}}$$

where $e_{j,h}^i = y_j - \hat{y}_{j,h}^i$.

• Permanent income uncertainty

$$\operatorname{Std}_{i}\left(\mathcal{E}_{h}^{i}\right) = \operatorname{Std}_{i}\left(\sum_{j=h+1}^{H} \frac{e_{j,h}^{i}}{R^{j-h}}\right)$$

Income uncertainty

• The forecast error of permanent income is

$$\mathcal{E}_{h}^{i} \equiv \sum_{j=h+1}^{H} \frac{e_{j,h}^{i}}{R^{j-h}}$$

where $e_{j,h}^i = y_j - \hat{y}_{j,h}^i$.

• Permanent income uncertainty

$$\operatorname{Std}_{i}\left(\mathcal{E}_{h}^{i}\right) = \operatorname{Std}_{i}\left(\sum_{j=h+1}^{H} \frac{e_{j,h}^{i}}{R^{j-h}}\right)$$

• Stratify individuals by sector s:

$$\operatorname{Std}_{s}\left(\mathcal{E}_{h}^{i}\right) = \left(\sum_{j=h+1}^{H} \frac{\operatorname{Var}_{s}\left(e_{j,h}^{i}\right)}{R^{2(j-h)}} + 2\sum_{j=h+1}^{H-1} \frac{1}{R^{j-h}} \sum_{k=j+1}^{H} \frac{\operatorname{Cov}_{s}\left(e_{j,h}^{i}; e_{k,h}^{i}\right)}{R^{k-h}}\right)^{\frac{1}{2}}$$
Messurement error

Income uncertainty over age • Film

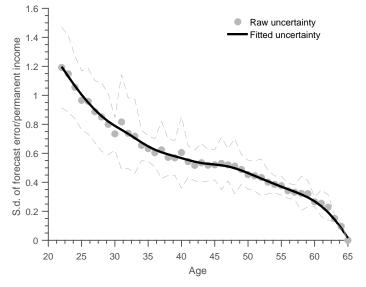


Figure: Age Profile of Income Uncertainty (Relative to Permanent Income)

Income uncertainty over age and sectors

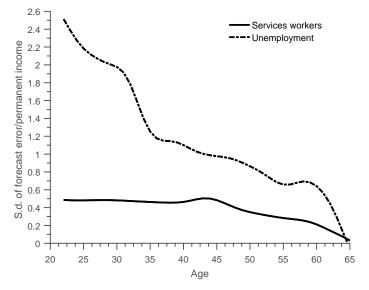


Figure: Age Profile of Income Uncertainty (Relative to Permanent Income)

Empirical specification

$$\ln c_p = \beta_0^p + \beta_1^p \sigma_p + \beta_2^p \sigma_c + \mathbf{X}_p \beta_3^p + \mathbf{X}_c \beta_4^p + \epsilon_p$$

$$\ln c_c = \beta_0^c + \beta_1^c \sigma_p + \beta_2^c \sigma_c + \mathbf{X}_p \beta_3^c + \mathbf{X}_c \beta_4^c + \epsilon_c$$

c_p, c_c : consumption of parent and child

- σ_p : parent's permanent income uncertainty
- σ_c : child's permanent income uncertainty

 X_p , X_c : full set of age dummies; dummies for marital status, race, gender, educational attainment, family size; permanent income, wealth holdings

	Parent's consumption	Child's consumption
Parent's uncertainty	-0.089** (0.033)	-0.039 (0.025)
Child's uncertainty	-0.081* (0.034)	-0.163** (0.038)

Table: Regression of Consumption (non-durables and services) on Income Risk

Note: Bootstrapped robust std errors clustered at parent level in parentheses; *p < 5%; **p < 1%

- Parents of children younger than 40 consume, on average, \$2,945 less per year because most of dynastic uncertainty is to be resolved
- Parents of construction workers consume, on average, 2.5% less than parents of services workers because of the uncertainty differential

Robustness analysis

- Endogeneity concerns
 - Health risk: include health controls
 - Selection into risky sectors:

- prob. of moving to high risk sector is not lower if parent looses job
- control for initial sector Sector
- Also robust to
 - Heterogeneous bequest motives
 - Information set used to predict income

Time and geography dummies

Model

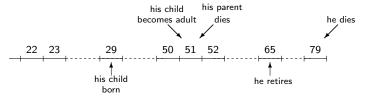
Can we write a model that predicts dynastic precautionary saving behavior consistent with the data?

- Model with strategic interactions between parents and children
- Contrast with unitary household model (no strategic interactions)

What are the implications of dynastic precautionary saving for:

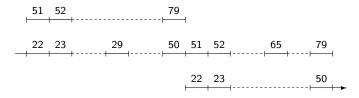
- inter-vivos transfers and bequest
- parental wealth?

• Life-cycle of an individual



- Work in sector s until retirement and earn risky labor income: y_p , y_c
- No income risk after retirement: $\Phi(\hat{y}_p)$
- Pay proportional tax au on labor income
- Hold government bond with gross return R: a_p , a_c

Overlapping generations



- Parent-child pairs indexed by age: (h_p, h_c)
- Intergenerational altruism: parent places weight γ on child's utility \rightarrow makes inter-vivos transfers g_p and end-of-life bequest
- Parent and child overlap for 29 years

Model with strategic interactions: Timing

- Each year they overlap, parent and child play a 2-stage game
 - Stage 1. Parent chooses consumption c_p, wealth a'_p and transfers g_p
 State variable: s̃_p = (a_p, a_c, y_p, y_c, s_p, s_c)
 - Stage 2. Child decides consumption c_c and wealth a'_c State variable: s_c = (a_c, y_c, y_p, g_p, a'_p, s_p, s_c)
- Equilibrium concept is MPE
- Solve backwards
- Can identify wealth position of overlapping generations, as well as size and timing of intergenerational transfers

Decision problems

Setup

- While alive, parent makes all consumption-saving decisions
- Family budget constraint: $c_p + c_c + a' = (1 \tau)(y_p + y_c) + Ra$
- Wealth position of parent and child cannot be separately identified
- Size and timing of intergenerational transfers is indeterminate

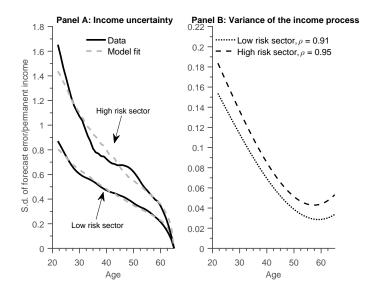
- Two sectors: low risk and high risk
 - \rightarrow group the 17 empirical sectors based on whether risk is below/above average
- Exogenous transition between sectors (including intergenerational)

$$\mathbf{P}_{s} = \begin{bmatrix} 0.921 & 0.079 \\ 0.113 & 0.887 \end{bmatrix} \quad \text{and} \quad \mathbf{P}_{s}^{ig} = \begin{bmatrix} 0.647 & 0.353 \\ 0.493 & 0.507 \end{bmatrix}$$

Income process

$$\ln y_{hs}^{i} = f\left(h\right) + \tilde{y}_{hs}^{i} \quad \text{and} \quad \tilde{y}_{hs}^{i} = \rho_{s} \tilde{y}_{h-1,s}^{i} + \epsilon_{hs}^{i}, \ \epsilon_{hs} \sim \left(0, \sigma_{hs}^{2}\right)$$

Parameter values



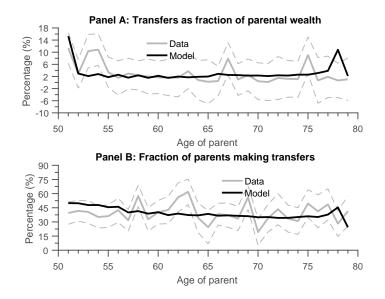
Parameter	Value	Justification/Target
a, b	0.168, 0.355	$\Phi\left(\hat{y} ight)=aar{y}+b\hat{y}$, Guvenen et al. (2013)
σ	2	Standard
β	0.959/0.958	Wealth to income ratio
γ	0.201/0.71	Parent-child consumption ratio
au	0.246	US average tax rate (OECD Tax Database)
R	1.04	Initial steady-state, G set accordingly
\underline{A}_h	0	Sensitivity analysis to negative borrowing limit

Table: Parameter Values

Table: Regression of Consumption on Income Risk (Models vs Data)

	Model without strategic interactions	Model with strategic interactions	Data
Parent's uncertainty	-0.022**	-0.098**	-0.089** [-0.153 - 0.025]
Child's uncertainty	-0.062**	-0.067**	-0.081* [-0.147 - 0.015]

Model predictions: inter-vivos transfers



Implementation:

- Shut down income risk of children (individuals of age 22-50)
 - evaluate effect on intergenerational transfers
 - not suited to evaluate effect on wealth accumulation
- Two-step approach
 - $\bullet\,$ shut down all income risk $\Rightarrow\,$ recover precautionary and dynastic precautionary wealth
 - $\bullet\,$ solve life-cycle model with and without risk $\Rightarrow\,$ recover precautionary wealth
 - difference is dynastic precautionary wealth

Table: The effect of eliminating dynastic uncertainty

	Aggregate Wealth	Intergenerational Transfers		
		Total	Inter-vivos transfers	End-of-life bequest
Total effect (%):	-27.37	-97.48	-99.82	-90.80

Table: The effect of eliminating dynastic uncertainty

	Aggregate Wealth	Intergenerational Transfers		
		Total	Inter-vivos transfers	End-of-life bequest
Total effect (%):	-27.37	-97.48	-99.82	-90.80

Caveats:

- crowding out between wealth components
- missing saving motives relevant at old age

• Consumption insurance coefficient in dynastic vs life-cycle model

$$\phi^{\epsilon} = 1 - rac{\operatorname{Cov}\left(\Delta c_{ih}, \epsilon_{ih}
ight)}{\operatorname{Var}\left(\epsilon_{ih}
ight)}$$

- Parent's dynastic precautionary saving accounts for 26% of the total consumption insurance of children
- The benefit is largest for children in high-risk sector

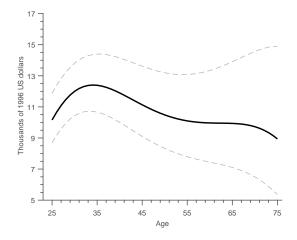
Conclusion

- Consumption of retired parents is backloaded
- This is largely a reflection of dynastic precautionary saving
- Implications:
 - Precautionary savings across generations \Rightarrow infinite horizon model
 - Design of social insurance policies: guaranteed minimum income, unemployment insurance
- Dynastic precautionary savings might help explain other facts
 - Retirees deplete wealth slower than the life-cycle model predicts
 - There is substantial wealth heterogeneity at retirement, even after controlling for realized lifetime income

$$\ln C_{it} = \beta_0 + \beta_{age} f \left(Age_{it} \right) + \beta_c Coh_i + \beta_t D_t + \beta_x \mathbf{X}_{it} + \varepsilon_{it}$$

- C_{it} : consumption expenditure
- $f(Age_{it})$: quartic polynomial in age
- Coh_i: 10-year cohort dummies
- *D_t*: year dummies
- $\boldsymbol{X}_{it}:$ dummies for race, educational attainment, family size and employment

Age profile of consumption: non-parents



◀ Go Back

If measurement error is:

- iid across sectors with variance $\sigma_{0,h}^2$
- uncorrelated with the true forecast error

then measured income uncertainty $\tilde{\operatorname{Var}}_{s}\left(\mathcal{E}_{h}^{i}\right)$ is

$$\tilde{\operatorname{Var}}_{s}\left(\mathcal{E}_{h}^{i}\right) = \underbrace{\operatorname{Var}_{s}\left(\mathcal{E}_{h}^{i}\right)}_{\text{true income risk}} + \underbrace{\sum_{j=h+1}^{H} \frac{\sigma_{0,h}^{2}}{R^{2(j-h)}}}_{\text{measurement error}}$$

		А			В			С	
Period 1 Period 2 Period 3	$e_{1,1}^{\mathcal{A}}$	$e^{\mathcal{A}}_{2,1}$ $e^{\mathcal{A}}_{2,2}$	$e^{A}_{3,1} \\ e^{A}_{3,2} \\ e^{A}_{3,3}$	e ^B _{1,1}	$e^B_{2,1}$ $e^B_{2,2}$	$e^B_{3,1} \\ e^B_{3,2} \\ e^B_{3,3}$	e _{1,1} ^C	$e_{2,1}^{C}$ $e_{2,2}^{C}$	$e^{C}_{3,1}$ $e^{C}_{3,2}$ $e^{C}_{3,3}$

1

$$\operatorname{Std}_{s}\left(\mathcal{E}_{1}^{i}\right) = \left(\frac{\operatorname{Var}_{s}\left(e_{2,1}^{i}\right)}{R^{2}} + \frac{\operatorname{Var}_{s}\left(e_{3,1}^{i}\right)}{R^{4}} + 2\frac{\operatorname{Cov}_{s}\left(e_{2,1}^{i};e_{3,1}^{i}\right)}{R \times R^{2}}\right)^{\frac{1}{2}}$$

where $\operatorname{Var}_{s}\left(e_{3,1}^{i}\right) = \frac{\left(e_{3,1}^{A}\right)^{2} + \left(e_{3,1}^{B}\right)^{2} + \left(e_{3,1}^{C}\right)^{2}}{2}$

where $\operatorname{Var}_{s}\left(e_{3,1}^{i}\right) = \frac{\left(e_{3,1}^{A}\right)^{2} + \left(e_{3,1}^{B}\right)^{2} + \left(e_{3,1}^{C}\right)^{2}}{2}$

✓ Go Back

		А			В			С	
Period 1	$e_{1,1}^{\mathcal{A}}$	$e_{2,1}^A$	$e_{3,1}^A$	$e^B_{1,1}$	$e^B_{2,1}$	$e_{3,1}^{B}$	$e_{1,1}^{C}$	$e_{2,1}^{C}$	e3,1
Period 2	,	$e_{2,2}^A$	$e_{3,2}^{A}$,	$e_{2,2}^B$	$e^B_{3,1} \\ e^B_{3,2}$,	$e_{2,2}^{C}$	es,2
Period 3			$e_{3,3}^{A}$			$e^{B}_{3,3}$			e3,3
$\operatorname{Std}_{s}\left(\mathcal{E}_{1}^{i}\right)$) = ($\frac{\operatorname{Var}_{s}(r)}{R^{2}}$	$\frac{e_{2,1}^{i}}{2}$ +	$-\frac{\operatorname{Var}_{s}}{H}$	$\frac{\left(e_{3,1}^{i}\right)}{R^{4}}$	$+2\frac{Cc}{c}$	$\frac{\mathrm{DV}_{s}\left(e_{2}^{i}\right)}{R\times}$	$\frac{1}{R^2}; e_{3,1}^i$	$\left(\frac{1}{2}\right)^{\frac{1}{2}}$

Flow Uncertainty

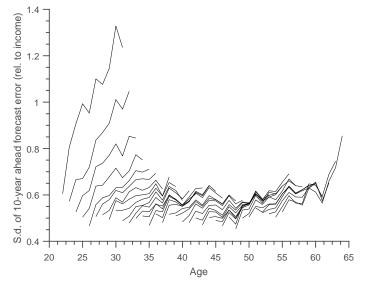


Figure: Relative Std Dev of the 10-year-ahead Earnings Forecasts

Estimation results ••• Back

_	Non-durable	consumption	Total consumption		
	Parent's consumption	Child's consumption	Parent's consumption	Child's consumption	
Parent's uncertainty	-0.089** (0.033)	-0.039 (0.025)	-0.081** (0.030)	-0.043 (0.025)	
Child's uncertainty	-0.081* (0.034)	-0.163** (0.038)	-0.076* (0.033)	-0.149** (0.038)	
\mathbf{X}_{ρ}					
Marital status	0.246** (0.057)	-0.024 (0.047)	0.251** (0.058)	-0.039 (0.046)	
Race	0.132** (0.049)	-0.017 (0.056)	0.132** (0.049)	-0.026 (0.056)	
Educ: some college	0.247** (0.030)	0.150** (0.026)	0.247** (0.030)	0.159** (0.026)	
Educ: college degree	0.271** (0.024)	0.066** (0.021)	0.271** (0.024)	0.076** (0.021)	
Permanent income	0.114** (0.011)	0.063** (0.010)	0.114** (0.013)	0.061** (0.010)	
Asset holdings	0.036** (0.003)	0.012** (0.002)	0.036** (0.003)	0.012** (0.002)	
X_c					
Marital status	-0.053* (0.023)	0.173** (0.028)	-0.066** (0.023)	0.177** (0.028)	
Gender	-0.019 (0.023)	0.288** (0.030)	-0.019 (0.022)	0.296** (0.030)	
Educ: some college	0.092** (0.021)	0.093** (0.025)	0.091** (0.021)	0.095** (0.025)	
Educ: college degree	0.164** (0.023)	0.171** (0.022)	0.164** (0.021)	0.172** (0.022)	
Permanent income	0.014* (0.006)	0.068** (0.006)	0.014* (0.006)	0.066** (0.006)	
Asset holdings	0.011** (0.004)	0.049** (0.006)	0.011** (0.004)	0.047** (0.006)	
Constant	10.225** (0.413)	11.469** (0.464)	9.833** (0.404)	11.468** (0.463)	
R ²	0.288	0.268	0.284	0.276	
Sample size	8,851	8,330	8,861	8, 323	

Corina Boar Princeton University

Dynastic Precautionary Savings

Table: Regression of Parental Consumption on Income Uncertainty

	Baseline	Health Controls
Parent's uncertainty	-0.089** (0.033)	-0.079** (0.029)
Child's uncertainty	-0.081* (0.034)	-0.068 (0.035)

Note: Bootstrapped robust std errors clustered at parent level in parentheses; ${}^*p < 5\%; \; {}^{**}p < 1\%$

◀ Go Back

Table: Regression of Parental Consumption on Income Uncertainty

	Baseline	Initial Sector
Parent's uncertainty	-0.089** (0.033)	-0.083** (0.029)
Child's uncertainty	-0.081* (0.034)	-0.065 (0.035)

Note: Bootstrapped robust std errors clustered at parent level in parentheses; ${}^*p < 5\%; \; {}^{**}p < 1\%$

Go Back

Heterogeneous bequest motives

	Coefficient on parent's risk	Coefficient on child's risk
1 Baseline	-0.089**	-0.081*
	(0.033)	(0.034)
2. Bequest proxy:	-0.098**	-0.082*
parent vs non-parent	(0.032)	(0.033)
3. Bequest proxy:	-0.075	-0.081*
number of children	(0.040)	(0.034)
4. How important it is	-0.089**	-0.083*
leaving an estate?	(0.035)	(0.034)

Table: Regression of Parental Consumption on Income Uncertainty

Note: Bootstrapped robust std errors clustered at parent level in parentheses; $*p < 5\%; \; ^{**}p < 1\%$

	Coefficient on parent's risk	Coefficient on child's risk
1. Baseline	-0.089** (0.033)	-0.081* (0.033)
2. Effect on food consumption	-0.041 (0.022)	-0.009 (0.025)
3. Consumption in later years	-0.139** (0.043)	-0.022 (0.039)
4. Parents with one child	-0.047 (0.055)	-0.136* (0.057)
5. Income forecast with rich information set	-0.075** (0.029)	-0.075* (0.036)
5. Time and geography	-0.070* (0.031)	-0.074* (0.033)

Table: Regression of Parental Consumption on Income Uncertainty

Note: Bootstrapped robust std errors clustered at parent level in parentheses; *p < 5%; **p < 1%

Child's problem:

$$\begin{aligned} V_{h_c}^c\left(\tilde{s}_c\right) &= \max_{c_c, a_c'} u\left(c_c\right) + \beta \mathbb{E} V_{h_c+1}^c\left(\tilde{s}_c' | \mathbf{y}, \mathbf{s}\right) \\ \text{s.t.} \quad c_c + a_c' &= (1 - \tau) \, y_c + Ra_c + g_p; \ a_c' \geq A_{h_c} \end{aligned}$$

where $\tilde{s}'_{c} = (a'_{c}, y'_{c}, y'_{p}, g'^{\star}_{p}, a''^{\star}_{p}, s'_{c})$, $\mathbf{y} = (y_{p}, y_{c})$, $\mathbf{s} = (s_{p}, s_{c})$.

Child's problem:

$$\begin{aligned} V_{h_c}^c\left(\tilde{s}_c\right) &= \max_{c_c, a_c'} u\left(c_c\right) + \beta \mathbb{E} V_{h_c+1}^c\left(\tilde{s}_c' | \mathbf{y}, \mathbf{s}\right) \\ \text{s.t.} \quad c_c + a_c' &= (1 - \tau) \, y_c + Ra_c + g_p; \; a_c' \geq A_{h_c} \end{aligned}$$

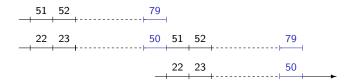
where
$$\tilde{s}'_{c} = (a'_{c}, y'_{c}, y'_{p}, g'^{\star}_{p}, a''^{\star}_{p}, s'_{p}, s'_{c})$$
, $\mathbf{y} = (y_{p}, y_{c})$, $\mathbf{s} = (s_{p}, s_{c})$.

Parent's problem:

$$\begin{split} V_{h_{p}}^{p}\left(\tilde{s}_{p}\right) &= \max_{c_{p},a_{p}^{\prime},g_{p}}u\left(c_{p}\right) + \gamma u\left(c_{c}^{\star}\left(\tilde{s}_{c}\right)\right) + \beta \mathbb{E}V_{h_{p}+1}^{p}\left(\tilde{s}_{p}^{\prime}\right) \\ \text{s.t.} \quad c_{p} + a_{p}^{\prime} + g_{p} = \left(1 - \tau\right)y_{p} + Ra_{p}; \; a_{p}^{\prime} \geq A_{h_{p}}, \; g_{p} \geq 0 \end{split}$$

where $\tilde{s}_{p}^{\prime} = \left(a_{p}^{\prime}, a_{c}^{\prime\star}\left(\tilde{s}_{c}\right), y_{p}^{\prime}, y_{c}^{\prime}, s_{p}^{\prime}, s_{c}^{\prime}\right). \end{split}$

Decision problems: terminal parent



Child's problem:

$$V_{50}^{c}(\tilde{s}_{c}) = \max_{c_{c},a_{c}'} u(c_{c}) + \beta \mathbb{E} V_{51}^{p}(\tilde{s}_{p}'|\mathbf{y},\mathbf{s})$$

where $\tilde{s}_{\rho}^{\prime} = \left(a_{c}^{\prime}+a_{\rho}^{\prime},0,y_{\rho}^{\prime},y_{c}^{\prime},s_{\rho}^{\prime},s_{c}^{\prime}
ight).$

Parent's problem:

$$V_{79}^{\rho}\left(\tilde{s}_{\rho}\right) = \max_{c_{\rho}, a_{\rho}^{\prime}, g_{\rho}} u\left(c_{\rho}\right) + \gamma u\left(c_{c}^{\star}\left(\tilde{s}_{c}\right)\right) + \beta \gamma \mathbb{E} V_{51}^{\rho}\left(\tilde{s}_{\rho}^{\prime} | \mathbf{y}, \mathbf{s}\right)$$

where $\tilde{s}'_{p} = (a'^{\star}_{c}(\tilde{s}_{c}) + a'_{p}, 0, y'_{p}, y'_{c}, s'_{p}, s'_{c}).$

Decision problems

Non-terminal parent:

$$V_{h_{p}}^{p}(\tilde{s}_{p}) = \max_{c_{p},c_{c},a'} u(c_{p}) + \gamma u(c_{c}) + \beta \mathbb{E} V_{h_{p}+1}^{p}(\tilde{s}'|\mathbf{y},\mathbf{s})$$

s.t. $c_{p} + c_{c} + a' = (1 - \tau)(y_{p} + y_{c}) + Ra$
 $a' \ge \underline{A}_{h_{p}} \ge 0$

where $\tilde{s}' = (a', y'_p, y'_c, s'_p, s'_c)$.

Terminal parent:

$$V_{79}^{p}(\tilde{s}_{p}) = \max_{c_{p},c_{c},a'} u(c_{p}) + \gamma u(c_{c}) + \beta \gamma \mathbb{E} V_{51}^{p}(\tilde{s}_{p}'|\mathbf{y},\mathbf{s})$$

s.t. $c_{p} + c_{c} + a' = \Phi(\hat{y}_{p}) + (1 - \tau) y_{c} + Ra$
 $a' \geq \underline{A}_{h_{p}} \geq 0$

where $\tilde{s}' = (a', y'_p, y'_c, s'_p, s'_c)$.

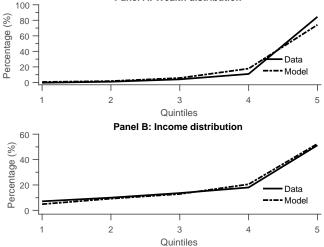
◀ Go Back

• Runs balanced budget

$$G + SS + RB = B' + \tau \bar{Y}$$

• Set G so that
$$R - 1 = 4\%$$
 in steady state

Wealth and income distribution



Panel A: Wealth distribution

